Chapter 4

DC Biassing BJT's

Using Superposition separate DC, AC

1. \(V_{BE} = 0.7V \) (4.1)
2. \(I_C = (1 + B)I_B \approx I_C \) For large B Values (4.2)
3. \(I_C = B I_B \) (4.3)

Operating Point

Biasing \(\rightarrow V_{DC} \rightarrow \) Fixed V, I levels

Gives operating point (quiescent point) \(Q \)

- \(I_{CMAX}, V_{CE MAX}, V_{CE SAT} \)
- Cutoff (\(I_B < 0mA \))
- Saturation (\(V_{CE} < V_{CE SAT} \))

Operate where gain is constant (Linear)
4.2 OPERATING POINT

Fig 4.11 OPERATING POINTS

A) NO BIAS - DEVICE OFF

B) INPUT SIGNAL VARIES OUTPUT (I, V) W/O SATURATION, CUT-OFF

C) OPERATION LIMITED (NONLINEARITIES CAN) OCCUR

D) CLOSE TO MAX OPERATING POWER/VOLTAGE LEVELS
Temperature effects

Leakage

Pce, Iceo change

PT + Iceo operating point Q changes

Linear Region

NPN

BE junction Fwd.-biased (P+), 0.6-0.7V

BC junction Rev.-biased (n-region+)

Cutoff Region

BE Rev

BC Rev

I_B ≤ 0 mA

Saturation

BE Fwd

BC Fwd

V_CE ≤ V_CE SAT

S → Stability Factor

Capacitor → Acts like open circuit for DC

\[Z_C = \frac{1}{j\omega C} \quad \text{as } \omega \to 0, \quad Z_C \to \infty \]
Fixed Bias

\[V_{i_{ac}} \]

\[V_{cc} \]

\[I_B \]

\[V_C \]

\[V_{CE} \]

\[R_B \]

\[R_C \]

\[V_{BE} \]

\[V_{CE} = V_{CC} - I_C R_C \]

\[I_C = B I_B \]

\[V_{CE} = V_C - V_E \]

\[V_{BE} = V_B - V_E \]

\[-V_{CC} + I_B R_B + V_{BE} = 0 \]

\[I_B = \frac{V_{CC} - V_{BE}}{R_B} \]

\[-V_{CC} + I_C R_C + V_{CE} = 0 \]

\[I_C = B I_B \]

RC determines |V_{CE}|
Ex 4.1 Fixed BIAS

1. \(I_{BC} \), \(I_{CQ} \)
2. \(V_{CEQ} \)
3. \(V_B \), \(V_C \)
4. \(V_{BC} \)

5. \[V_{CC} = +12V \]

\[I_{BQ} = (12 - 0.7V) \]
\[\frac{240k\Omega}{240k\Omega} = 47.08 \text{mA} \]

Since \(B = 50 \), \(I_C = B \cdot I_B = 50 \cdot (47.08 \text{mA}) = 2.35 \text{mA} \)

6. \[V_{CC} = 12V \]

\[V_{CEQ} = \frac{12 - V_{CEQ}}{2.2k\Omega} = I_{CQ} = 2.35 \text{mA} \]

\[V_{CEQ} = 12V - I_{CQ}(2.2k\Omega) = 6.83V \]

7. \[V_B - V_E = V_{BE}, V_E = 0 \]

\[V_{BE} = 0.7V \]

\[V_{CEQ} = V_C - V_{EQ} \]

\[V_{CC} = \frac{R_C}{I_C} \]

\[V_{CC} = I_C \cdot R_C + V_C \]

\[V_C = \frac{V_{CC} - I_C \cdot R_C}{I_C} = 6.83V \]

8. \[V_{BC} = V_B - V_C = 0.7V - 6.83V = -6.13V \]
SATURATION

Max Values Reached

\[\frac{V_{CE}}{I_c} = R_c = 0 \Omega \]

\[V_{CE} = 0V \]

\[I_c = I_{C\text{ sat}} \]

\[I_{C\text{ sat}} = \frac{V_{CC}}{R_c} \]

 load line analysis

How to Determine Q-point

\[V_{CE} = V_{CC} - I_c R_c \]

straight line function
1. \(V_{CE} = V_{CC} \) \(I_C = 0 \) mA

2. \(I_C = \frac{V_{CC}}{R_C} \) \(V_{CE} = 0 \) V

3. DRAW STRAIGHT LINE

4. BY VARYING \(R_B \), \(I_B \) LEVEL CHANGES \(\therefore \)
 Q POINT MOVES UP OR DOWN LINE

5. CHANGING \(R_C \) MAKES SLOPE OF LINE
 MORE OR LESS NEGATIVE

6. HOLDING \(I_B \) CONSTANT - MOVES Q-POINT
 ALONG \(I_B = \frac{V_{CE}}{I_C} \) GRAPH.

7. VCC LARGER, SLOPE SAME BUT
 MOVES AWAY FROM \((V_{CE},I_C)\) ON GRAPH
Solving for resulting I_B gives Q_p.

$V_{ce} = V_{CC} | I_C = 0$ mA

Load line

Figure 4.1

$V_{ce} \rightarrow V_{cc}$

Load line

$V_{ce} = V_{CC}$

$I_C = 0$

Q-point

$\frac{V_{ce}}{V_{CC}} = \frac{R_C}{V_{CC}}$
Figure 4.17 BJT BIAS CIRCUIT WITH EMITTER RESISTOR.

Figure 4.18 BASE-EMITTER LOOP.
EMITTER STABILIZED BIAS

1. \[+V_{cc} -I_B R_B -V_{be} -I_E R_E = 0 \]
2. \[I_E = (B+1)I_B \]
3. \[V_{cc} -I_B R_B -V_{be} -(B+1)I_B R_E = 0 \]
4. \[-I_B (R_B + (B+1)R_E) +V_{cc} -V_{be} = 0 \]

SOLVING

\[I_B = \frac{V_{cc} -V_{be}}{R_B + (B+1)R_E} \]