L13 04202017 ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

Scaling laws: Generalized scaling (GS) p. 610

Design steps p.613

Nanotransistor issues (page 626)

Degradation mechanisms in NanoFETS (p.627-635)

Logic Gate Sizing NMOS

CMOS

Equivalent Circuits, Capacitance calculations

scaled-down potentials/voltages $\phi' = \phi/k$, here, k > 1scaled-down dimensions $(x',y',z') = (x,y,z)/\lambda$, here, $\lambda > 1$ scaled-down concentrations $(n',p',N'_D,N'_A) = (n,p,N_D,N_A)/\delta$, $\delta = k/\lambda^2$,

Parameters	LATV 1.3micron	0.25 micron QMDT* (IBM)	25nm SiGe (Home work)	Scaling factor	Comments
Channel Length L(μm)	1.3	0.25	0.025	λ=10	
Gate Insulator Oxide t _{ox} (nm)	25	5.0 (SiO ₂)	0.5 (SiO ₂)	10	$0.5(\epsilon_{HfO2}/\epsilon_{SiO2}) = 1.7nm$
Junction Depth x _j (nm)	350	70-140	7-14	10	Gives high Rs and Rd
$V_{TH}(V)$ V_{TH} =4x ΔV_{TH}	0.6	0.25 $V'_{TH} = 4x \Delta V'_{TH} \Delta V'_{TH}$ $= 0.06$	0.06 $V'_{TH} = 4x \Delta V'_{TH} \Delta V'_{TH}$ $= 0.015$	к=4	ΔV_{TH} =0.015V
$V_{DS} = V_{DD} (V)$ $V_{DD} = 4 \times V_{TH}$	2.5	1.0	0.25	κ=4	
Band Bending (V)	1.8	0.8	0.3	?	
Doping N _A (cm ⁻³)	3x10 ¹⁵	$N_A = 3 \times 10^{16}$	N' _A =7.5×10 ¹⁷	$N_A \times \lambda^2/\kappa = 25$	
(Rs + Rd)ID IR Drop (mV)	NA	< 10mV	< 1mV	??	How to solve this
RC Delay τ (ps)	Not appl. (NA)	100ps	2-5 ps??	??	How to solver this

Generalized Scaling (Baccharini et al 1984)

Design steps using GS

- **1. Find** dimensional scaling λ from existing channel dimensions and desired scaled-down
- 2. Using processing parameters, determine threshold variation ΔV_{TH}

Determine V_{TH} (=~4 ΔV_{TH}) and V_{DD} (V_{DD} ~4* V_{TH})

- **3. Find** the scaling for voltages k
- **4. Compute** the scaling factor δ for doping.

Verification of scaled-down design

- 1. Is the oxide thickness realistic in terms of gate leakage current?
- 2. Is supply voltage and threshold realistic in terms of source to drain tunneling?
- 3. Is the device to device fluctuation in a die and in dies in a wafer acceptable?
- **4. Is the drive current acceptable?** Is the ID-VG and ID-VD characteristics ok in terms of fan-in and fan-out and logic noise margins?

ΔV_{TH}

$$V_T = V_{FB} - \frac{Q_{SC}}{C_o} + 2\psi_B = \phi_{ms} - \frac{Q_{ox}}{C_{ox}} + \frac{1}{C_o} q N_A \sqrt{\frac{2 \varepsilon_{sr} \varepsilon_o 2\psi_B}{q N_A}} + 2 \frac{kT}{q} \ln \frac{N_A}{n_i}$$

$$q\phi_{ms} = q\phi_m - q\chi_{Si} - \frac{E_g}{2} - kT \ln \frac{N_A}{n_i}$$

Dopant density variation (due to implant or in substrate)
Oxide or gate insulator thickness variation
Oxide dielectric constant variation in thin films of 1-2nm
Channel width and length variation,
Oxide charge density variation

Nano-transistor scaling issues p. 626 FET operation as partially depleted or fully depleted **Degradation Mechanisms**:

- 1. Poly-Si gate depletion and increased gate capacitance
- 2. Source to drain tunneling, loss of gate control
- 3. Channel to gate tunneling for thin oxides:
 - a. Fowler-Nordheim tunneling;
 - b. Direct Tunneling
- 4. Gate induced drain leakage
- 5. Oxide breakdown

Trapping of channel electron under gate ox

Degradation Mechanisms (627)

1.Poly-Si gate depletion and increased gate capacitance Poly silicon region: Poly-Si may be implanted during processing using ion implantation. However, with this method, some poly-Si atoms will penetrate through the oxide, causing problems. This damage the gate insulator. The charge in poly-silicon gate depletion represents capacitance.

Degradation Mechanisms

3. Channel to gate tunneling.

Degradation Mechanisms

4. GIDL.

a. Gate-induced drain leakage (GIDL) current

The narrowing of the depletion layer at or near the intersection of the pn junction and Si-SiO₂ interface caused an increase of the local electric field, called *field crowding* [(b) in fig. below]. Field crowding causes the gate voltage in the drain junction MOSFET to produce increased junction leakage current, called *gate-induced drain leakage*, or GIDL. It is very important to minimize GIDL as much as possible in CMOS devices.

Degradation Mechanisms (p.631)

5. Oxide Breakdown

•Oxide (dielectric) breakdown

As we have seen, significant electron tunneling can occur when a large electric field is applied across an oxide layer. This tunneling can lead to a condition called *dielectric breakdown*, after which an oxide layer ceases to be a good electrical insulator.

Dielectric breakdown can occur either softly (i.e. gradually) or abruptly. The physical mechanisms involved in, and leading to, dielectric breakdown involve:

- 1.impact ionization in the oxide layer
- 2.injection of holes
- 3.creation of electron-hole traps in the oxide
- 4.creation of sates at oxide-Si interface

Degradation Mechanisms (631)

Chapter 10 NMOS Inverter

Fig. 1, p. 638

NMOS Inverter (load and driver resistance ratios) p.639

Fig. 2. Inverter with resistive load.

Equivalent circuit

i.e.
$$R_{load} \ge 4 - 6 * R_{driver}$$

$$R_{PU} \ge 4 - 6 * R_{Pd}$$

$$\left(\frac{L}{W}\right)_{PU} \ge 4 - 6 * \left(\frac{L}{W}\right)_{Pd}$$

$$\frac{\left(\frac{W}{L}\right)_{Pd}}{\left(\frac{W}{L}\right)_{pU}} \equiv \frac{\left(\frac{W}{L}\right)_{driver}}{\left(\frac{W}{L}\right)_{load}} = 6$$

In an inverter we have basically three choices for load:

a. Resistor R_L

Fig. 3a. Inverter with resistor as load.

b. Enhancement mode transistor as load. Connecting the gates to V_{DD} or a higher voltage make an enhancement mode transistor act as a resistor.

Fig. 3b. Enhancement transistor as the load.

c. Depletion mode transistor as the load.

Fig. 3c. Depletion mode transistor as the load.

NMOS Inverter Configurations

Inverter logic threshold:

 V_{inv}

Important: $V_{inv} \neq V_{TH}$ or V_{TE}

It is the voltage on the input of the enhancement mode transistor that results in an equal output voltage.

i.e.
$$V_{in} = V_{out} = V_{inv}$$

Simplified calculation for V_{inv} :

Assume: Both pull-up and pull-down are in saturation.

Figure 5. An inverter with pull-down and pull-up devices.

The current in the depletion mode transistor = the current in the enhancement mode

10.2.2 Device sizing in static (or ratioed) gates/networks

Fig. 6. Output-Input voltage characteristics a a function of W_{pd} The slope of the voltage transfer characteristics

10.2.3 Dynamic logic gates/networks p643

Fig. 7. A dynamic or two-phase ratio-less inverter

Fig. 13, p.649

Layout of NMOS Inverter

Fig. 10. (b) Schematic and (b) layout an NMOS inverter.

Reference: Hodges and Jackson (1983)

Areas and perimeters are calculated from Fig. 3.6.

Inverter:

Source, drain areas =
$$10 \mu m \times 10 \mu m = 100 pm^2$$

Source perimeter = $4 \times 10 = 40 \mu m$

Drain perimeter = $10 + 10 + 10 + 5 = 35 \mu m$

Load:

Source area = $5 \times 5 = 25 pm^2$

Drain area = $10 \times 10 = 100 pm^2$

Source perimeter = $5 + 5 + 5 = 15 \mu m$

Drain perimeter = $4 \times 10 = 40 \mu m$

Sizing of FETs in a logic gate (p.647)

Fig. 11. NMOS gate with W/L ratios of various FETs.

Circuit Model

Fig. 14a. Capacitances
Page 650

Fig. 14(b) Intrinsic model showing capacitances.

Capacitances are computed to find propagation delay(p. 651-660)

Fig. 15: Capacitance components (intrinsic and extrinsic) reflected on the output of stage #1.

C_{DB1}:

 $C_{DB1} = C_{DB,intrinsic} + C_{DB,junctionz}$

 $C_{GD1} = C_{GD.intrinsic} + C_{GDO}$ (Overlap capacitance)

CsB2:

 $C_{SB2} = C_{SB,intrinsic} + C_{SB,iunction}$

 $C_{GD2} = C_{GD \text{ intrinsic}} + C_{GDO} \text{ (Overlap } \rightarrow \text{Extrinsic} \text{)}$

C_I = Interconnect Capacitance

 $C_T = C_{DB1} + C_{GD1} + C_{SB2} + C_{GD2} + C_I + C_{G3}$

The bias dependent capacitances include C_{DB1} and C_{SB2}.

nverter pair delay:

(<mark>9</mark>)

$$\begin{split} t_{\text{power BF}} &= t_p \left|_{HI-2-LO} + t_p \right|_{LO-2-HI} \\ t_{\text{power BF}} &= 2C_L R_{PD} + \left[2R_{PU}C_L \left(t_{\text{off}} - t_{\text{in}} \right) \right]^{1/2} & \text{for } t_{\text{out}} < t_{\text{off}} \\ or \\ t_{\text{power BF}} &= 2C_L R_{PD} + R_{PU}C_L + \frac{1}{2} \left(t_{\text{off}} - t_{\text{in}} \right) & \text{if} \quad t_{\text{out}} \ge t_{\text{off}} \end{split}$$

In summary, the delay depends on the output capacitance of the inverter and the charging and discharging currents through the PU and PD transistors.

p.660 CMOS Inverter

21

Fig. 19: A CMOS inverter using an NMOS and PMOS FET.

p.661 Fig. 21 Voltage transfer characteristic

Cross Section of CMOS inverter Structure Latch-up Phenomenon

V PMOS

Fig. 33. Latch up in CMOS inverter (p672)

we need to make:

$$\frac{1}{2} \int_{PMOS} = \frac{\mu_N}{\mu_P}$$

$$\frac{1}{2} \int_{NMOS} \frac{1}{2} \frac$$

Generally, $\mu_{\scriptscriptstyle N}$ is 2 to 2.5 times higher than $\mu_{\scriptscriptstyle P}$. Therefore,

$$\left(\frac{W}{L}\right)_{PMOS} = [\text{between 2 and 2.5}] \times \left(\frac{W}{L}\right)_{NMOS}$$
 (16)

Some authors (Hodges and Jackson) take

$$\left(\frac{W}{L}\right)_{PMOS} = 2.5 \left(\frac{W}{L}\right)_{NMOS}$$

Fig.8 CMOS Inverter (Ref: Hodges & Jackson)

Fig. 26. Sizing of CMOS transistors (p 668)

(17a)

Fig. 27 Sizing of 2-input NOR 2-input NAND CMOS inverter (p668)

FIN-FET Static RAM

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 59, NO. 8, AUGUST 2012

2037

Denser and More Stable SRAM Using FinFETs With Multiple Fin Heights