ECE 249 VLSI Design and Simulation Spring 2005

John A. Chandy

Department of Electrical and Computer Engineering

Contact Info

- Office: ITEB 437
- Phone: 860-486-5047
- Email: john.chandy@uconn.edu
- Office Hours:TuW 11:30-1
- Website: http://www.engr.uconn.edu/~chandy/ece249

ΤA

- Janardhan Singaraju
- Office: HBL A-65
- Available for software and lab questions

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1

Books

- "Digital Integrated Circuits", Rabaey, Chandrakasan, and Nikolic
- Suggested reference materials
 - "Principles of CMOS VLSI Design", Weste and Eshragian
 - "CMOS Digital Integrated Circuits", Kang and Leblebici
 - "Digital Integrated Circuits", (ECE 215 notes), Ayers

Class Schedule

- Lectures are in ITE 125
- No lectures during the weeks of April 13th and April 20th.
- Labs on Wednesdays will be in ITEB C25
 - No lab for the first week
- Lab will be open M-F 9-5
 - Evening hours may be available later in the semester

Homework Policy

- 5 to 6 homeworks
- Due at the beginning of class on the due date
- 7 lab assignments

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1

Grading Policy

- 35% Exams (February 22nd and April 7th)
- 10% Homework
- 20% Labs
- 35% Final project

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1

Course goals

- Be able to contribute to an industry digital VLSI design project
- Become familiar with design tools (Cadence)
- Understand design flows
- Understand behavioral, structural, and physical specifications
- Can apply VLSI design practices

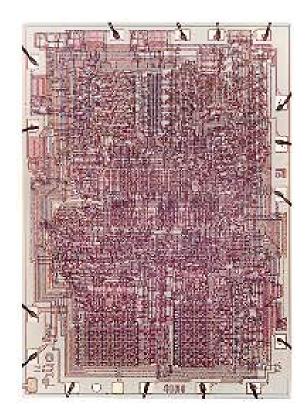
Topics

- MOS Transistor Theory
- Circuit Characterization and Performance Estimation
- CMOS Logic Design
- VLSI Design Methodologies
- VLSI Subsystem Design
- Testing and Verification

What is VLSI design?

• The process of creating an integrated circuit from specification to fabrication

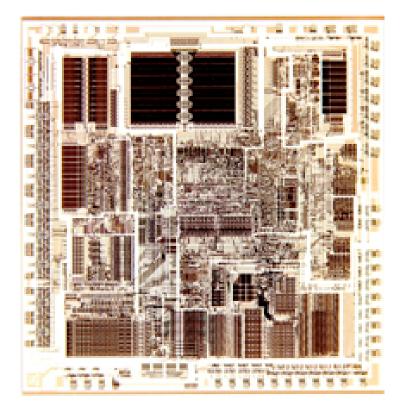
What is an integrated circuit?


 A single integrated component that contains all the primary elements of an electrical circuit - transistors, wiring, resistors, etc.

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1

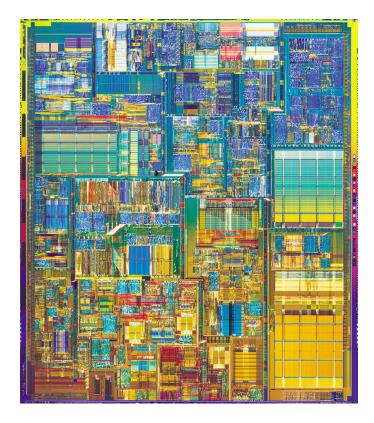
Integrated circuit

- Small Scale Integration (SSI)
 - Tens of transistors
- Medium Scale Integration (MSI)
 - Hundreds of transistors
- Large Scale Integration (LSI)
 - Thousands of transistors
- Very Large Scale Integration (VLSI)
 - Hundred thousands of transistors


Intel 4004

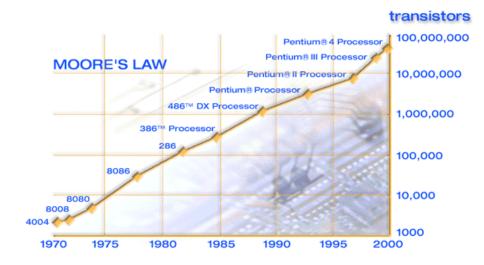
- First microprocessor
- Designed in 1971
- 2300 transistors
- ~100 KHz

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1


Intel 80286

- Released in 1982
- 134,000 transistors
- 6-12.5 MHz

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1


Intel Pentium IV

- Released in 2000
- 42 million transistors
- .18 micron
- > 1 GHz

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1

Moore's Law

The number of available transistors in a circuit doubles every 18 months

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1

100 million transistors???

- Partitioning
- Computer-Aided Design Tools (EDA)
- Design Methodology
- Testing and Verification

Partitioning

- Break the problem into smaller more manageable parts
- Reuse logic modules
- Simplifies layout
- But its not always easy deciding how to partition the problem

Computer-Aided Design Tools

- Schematic Capture
- Synthesis
- Simulation
- Verification
- Automated placement and routing

Computer-Aided Design Tools

- Cadence
- Synopsys
- Mentor Graphics

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1

Design Methodology

- Functional Specification
 - What does the chip do?
- Behavioral Specification
 - How does it do it? (abstractly)
- Logic Design
 - How does it do it? (logically)
- Layout
 - How does it do it? (physically)

Design constraints

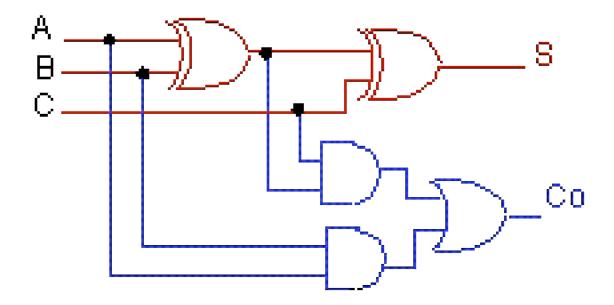
- Budget (\$\$\$)
- Area
- Power requirements
- Speed
- Schedule
- Risk

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1

Functional Specification

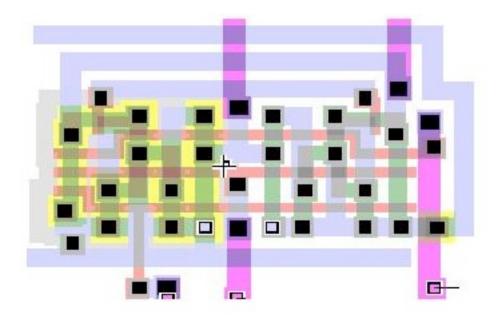
ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1

Behavioral specification


- VHDL
- Verilog

```
entity Full_Adder is
    generic (TS : TIME := 0.11 ns; TC : TIME := .1 ns);
    port (X, Y, Cin: in BIT; Cout, Sum: out BIT);
end Full_Adder
architecture Behave of Full_Adder is
begin
```

```
Sum <= X xor Y xor Cin after TS;
Cout <= (X and Y) or (X and Cin) or (Y and Cin) after TC;
end;
```


ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1

Logic Design

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1

Layout

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1

Testing and Verification

- Do it at every phase of the design
- Critical to keeping to budget

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1

Trust, but verify ...

Phase	Testing time	Time to redo	Cost to redo
Behavioral Spec	1-2 days	1-2 weeks	~\$20K
Logic Design	2-3 days	2-3 weeks	~\$40K
Layout	2-3 days	1-2 weeks	~\$20K
Fabrication	1 week	3-4 months	\$1MM

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1

VLSI Design Methodologies

- Full Custom
- Standard Cell
- Gate Array

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1

Full Custom VLSI Design

- Advantages
 - Fastest implementation possible
 - Can be very cheap in high volumes
- Disadvantages
 - Very expensive to design
 - Not customizable
 - Error-prone design flows

Full Custom VLSI Alternatives

- Gate Arrays
 - Advantages
 - Faster than microprocessor
 - Field programmable versions are easily customizable
 - Design is easier than full custom VLSI
 - Disadvantages
 - Slower than full custom VLSI
 - Limited in number of transistors/gates
 - Takes more area

Full Custom VLSI Alternatives

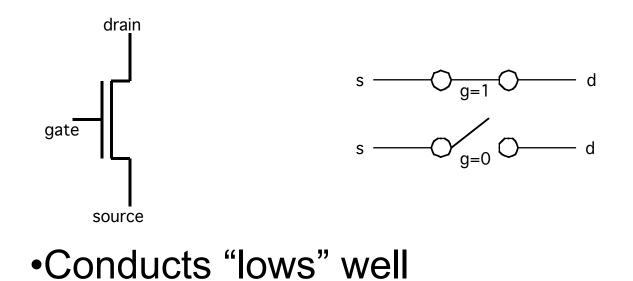
- Standard Cell Design
 - Advantages
 - Faster design time than full custom
 - Higher performance than Gate Arrays
 - Disadvantages
 - Lower performance than full custom
 - More area than full custom

Full Custom VLSI Alternatives

- Microprocessor
 - Advantages
 - General purpose
 - Widely available
 - Cheap on a single use basis
 - Design is easy
 - Disadvantages
 - Slower than VLSI
 - Takes more area
 - More expensive than VLSI over millions of units

MOS Transistor Theory

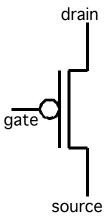
- We will focus only CMOS VLSI design since that is the dominant design style in current industry practice
- Other VLSI technologies include:
 - nMOS
 - TTL
 - BiCMOS
 - GaAs
 - ECL

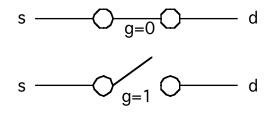

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1

MOS Transistor Theory

- Two types of transistors
 - nMOS
 - pMOS
- Digital integrated circuits use these transistors essentially as a voltage controlled switch

nMOS Transistor

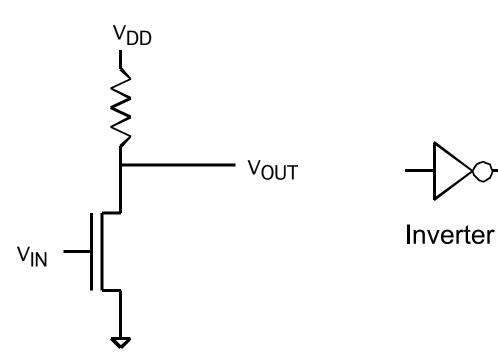

If the gate is "high", the switch is onIf the gate is "low", the switch is off



ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1

pMOS Transistor

If the gate is "low", the switch is onIf the gate is "high", the switch is off

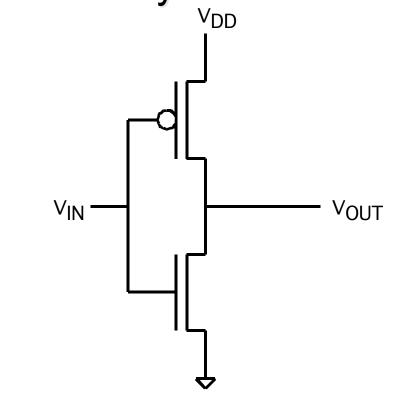


•Conducts "highs" well

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1

Logic gates in nMOS

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1


Problems with nMOS

- Static current draw
 - When the transistor is on, there is a path from V_{DD} to ground
 - More power drain
- Logic high output does not go all the way to VDD

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1

Complementary MOS

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1

CMOS

- No static current flow
- Less current means less power

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1

Next class

• Read Chapters 1, 2 and 3 of book

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 1