VLSI Design and Simulation

Lecture 2 MOS Transistor Theory

Lab

- Make sure that you have an engineering UNIX account
- Contact ECS if you don't

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

MOS Transistor Theory

- Two types of transistors
 - nMOS
 - pMOS
- Digital integrated circuits use these transistors essentially as a voltage controlled switch

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

If the gate is "high", the switch is onIf the gate is "low", the switch is off

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

Body/Substrate (p)

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

Accumulation Mode

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

Accumulation Mode

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

Enhancement-mode

Depletion-mode

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

Threshold Voltage

- Dependent on
 - Gate conductor material
 - Gate insulator material
 - Channel Doping
 - Voltage difference between source and body

Threshold Voltage

$$V_T = V_{T0} + \gamma \left(\sqrt{\left| -2\phi_F + V_{SB} \right|} - \sqrt{\left| 2\phi_F \right|} \right)$$

- •Threshold voltage is usually arrived at empirically
- γ is the body-effect coefficient and controls the impact of the source to bulk voltage
- • ϕ_F is the Fermi potential and is dependent on doping levels

$$\phi_F = \frac{kT}{q} \ln \left(\frac{N_A}{N_i} \right)$$

(

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

Accumulation Mode

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

Enhancement-mode

Depletion-mode

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

MOS Transistor Parameters

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

MOS Transistor Characteristics

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

MOS Transistor Characteristics

•Mobile electron charge $Q_i(x) = -C_{ox}[V_{GS} - V(x) - V_T]$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

MOS Transistor Characteristics

• Current is product of carrier drift velocity and availabe charge

$$I_{DS} = -\upsilon(x)Q_i(x)W$$
$$I_{DS} = -\mu_n \frac{dV}{dx}Q_i(x)W$$
$$T_{DS}dx = -W\mu_n Q_i(x)dV$$

Integrating along channel

$$\int_0^L I_{DS} dx = -W\mu_n \int_0^{V_{DS}} Q_i(x) dV$$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

1

MOS Transistor Characteristics

$$\int_{0}^{L} I_{DS} dx = -W\mu_{n} \int_{0}^{V_{DS}} Q_{i}(x) dV$$

$$I_{DS} L = W\mu_{n} \int_{0}^{V_{DS}} C_{ox} \left[V_{GS} - V(x) - V_{T} \right] dV$$

$$I_{DS} L = W\mu_{n} C_{ox} \left[(V_{GS} - V_{T}) V_{DS} - \frac{V_{DS}^{2}}{2} \right]$$

$$I_{DS} = k_{n} \left[(V_{GS} - V_{T}) V_{DS} - \frac{V_{DS}^{2}}{2} \right]$$

• k_n is the gain factor and is dependent on the transconductance ($\mu_n C_{ox}$) and the ratio between *W* and *L*.

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

Example

- μ_n = 600 cm²/V s
- $C_{ox} = 7 \times 10^{-8} \text{ F/cm}^2$
- W = 20 μ m
- L = 2 μm
- $k_n = \mu_n C_{ox} W/L = 0.42 mA/V^2$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

- Cutoff region ($V_{GS} < V_T$) $I_{DS} = 0$
- Linear region ($V_{GS} > V_T$, $V_{DS} < V_{GS} V_T$) $I_{DS} = k_n \left[(V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right]$
- Saturated region ($V_{GS} > V_T$, $V_{DS} > V_{GS} V_T$) $I_{DS} = k_n \frac{(V_{GS} - V_T)^2}{2}$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

- Cutoff region (V_{GS} < V_T)
 s _____ D
- Linear region ($V_{GS} > V_T$, $V_{DS} < V_{GS} V_T$)

• Saturated region ($V_{GS} > V_T$, $V_{DS} > V_{GS} - V_T$) s _____ D

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

MOS Transistor Secondary Effects

- Body effect
- Channel-length modulation
- Drain punchthrough
- Impact ionization
- Velocity Saturation

Body effect

- We assumed that $V_{SB}=0$ I.e. the source potential equals the substrate potential
- In certain situations, this assumption is not true
- Has the effect of raising the threshold voltage

Channel-Length Modulation

- We previously assumed a constant L
- In reality, when V_{DS} > (V_{GS}-V_T), the channel is pinched off and the effective channel length is reduced.
- Pinch off length is proportional to the square root of $V_{\text{GS}}\text{-}V_{\text{T}}$
- Net effect is that I_{DS} is not constant in the saturated region.

- Cutoff region ($V_{GS} < V_T$) $I_{DS} = 0$
- Linear region ($V_{GS} > V_T$, $V_{DS} < V_{GS} V_T$) $I_{DS} = k_n \left[(V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right]$
- Saturated region $(V_{GS} > V_T, V_{DS} > V_{GS} V_T)$ $I_{DS} = k_n \frac{(V_{GS} - V_T)^2}{2} (1 + \lambda V_{DS})$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

Channel-Length Modulation

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

- Cutoff region (V_{GS}<V_T)
 s _____ D
- Linear region ($V_{GS} > V_T$, $V_{DS} < V_{GS} V_T$)

• Saturated region ($V_{GS} > V_T$, $V_{DS} > V_{GS} - V_T$)

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

Drain punch-through

- For very large V_{DS} , the depletion region grows from the drain to the source
- Current flow increases rapidly
- V_{GS} has no control on the current
- Potentially damaging to transistor
- Short channel effect

Impact ionization

- At small gate lengths, electric field becomes more pronounced
- Electrons get excited with enough energy to cause a substrate current
- This causes change of transistor parameters - threshold voltage, current flow, etc.

Velocity Saturation

- Assumption was that carrier velocity is proportional to electric field
- When channel is small, and the voltage is large, the velocity can saturate

$$\upsilon = \begin{cases} \mu_n \xi & \xi < \xi_c \\ \mu_n \xi_c & \xi > \xi_c \end{cases}$$

 ξ_c is value of electric field at which velocity saturates

- Cutoff region ($V_{GS} < V_T$) $I_{DS} = 0$
- Linear region ($V_{GS} > V_T$, $V_{DS} < V_{GS} V_T$) $I_{DS} = k_n \left[(V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right]$
- Saturated region $(V_{GS} > V_T, V_{DS} > V_{GS} V_T)$ $I_{DS} = k_n \left[(V_{GS} - V_T) V_{DSAT} - \frac{V_{DSAT}^2}{2} \right]$

© John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

Velocity Saturation

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

Velocity Saturation

Lecture 2

MOS Gain Characteristics

• Transconductance
$$g_m = \frac{dI_{DS}}{dV_{GS}}$$

$$g_m = 0$$

- Linear region

$$g_m = k_n V_{DS}$$

- Saturated region

$$g_m = k_n \big(V_{GS} - V_T \big)$$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

CMOS Characteristics

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

- Cutoff region $(V_{GSn} > V_{Tn})$ $I_{DSn} = 0$
- Linear region $(V_{GSn} < V_{Tn}, V_{DSn} > V_{GSn} V_{Tn})$ $I_{DSn} = -k_n \left[(V_{GSn} - V_{Tn}) V_{DSn} - \frac{V_{DSn}^2}{2} \right]$
- Saturated region $(V_{GSn} < V_{Tn}, V_{DSn} < V_{GSn} V_{Tn})$ $I_{DSn} = -k_n \frac{(V_{GSn} - V_{Tn})^2}{2} (1 + \lambda V_{DSn})$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

- Cutoff region $(V_{GSp} > V_{Tp})$ $I_{DSp} = 0$
- Linear region $(V_{GSp} < V_{Tp}, V_{DSp} > V_{GSp} V_{Tp})$ $I_{DSp} = k_p \left[\left(V_{GSp} - V_{Tp} \right) V_{DSp} - \frac{V_{DSp}^2}{2} \right]$
- Saturated region $(V_{GSp} < V_{Tp}, V_{DSp} < V_{GSp} V_{Tp})$ $I_{DSp} = k_p \frac{\left(V_{GSp} - V_{Tp}\right)^2}{2} \left(1 + \lambda V_{DSp}\right)$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

$$V_{GSn} = V_{in}$$

$$V_{DSn} = V_{out}$$

$$V_{GSp} = V_{in} - V_{DD}$$

$$V_{DSp} = V_{out} - V_{DD}$$

$$V_{tn} \approx V_{tp}$$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

- Cutoff region $(V_{in} > V_{DD} V_T)$ $I_{DSp} = 0$
- Linear region $(V_{in} < V_{DD} V_T, V_{out} > V_{in} + V_T)$ $I_{DS} = k_p \left[(V_{in} - V_{DD} + V_T) (V_{out} - V_{DD}) - \frac{(V_{out} - V_{DD})^2}{2} \right]$
- Saturated region $(V_{in} < V_{DD} V_T, V_{out} < V_{in} + V_T)$ $I_{DS} = k_p \frac{\left(V_{in} - V_{DD} + V_T\right)^2}{2} \left(1 + \lambda \left(V_{out} - V_{DD}\right)\right)$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2

Next Class

- Noise Margin
- Static Load Inverters
- Read Chapter 5

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 2