VLSI Design and Simulation

Lecture 5

Performance Characterization

Topics

- Performance Characterization
 - Resistance Estimation
 - Capacitance Estimation
 - Inductance Estimation

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

Inverter Voltage Transfer Curve

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

• Voltage versus Time curve (ideal)

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

- Gate delay
- Voltage versus Time curve

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

- Delay
 - Primary determinant of the speed of a circuit
 - Due to resistances and capacitances
 - Intrinsic resistance and capacitance
 - Extrinsic resistance and capacitance

- Dependent on resistivity of material
- Directly proportional to length
- Inversely proportional to cross-sectional area

$$R = \rho \frac{l}{A}$$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

$$R = \rho \frac{L}{A} = \frac{\rho}{H} \frac{L}{W} = R_s \frac{L}{W}$$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

- R_s is the sheet resistance expressed in terms of $\Omega/$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

Interconnect Material	Typical Resistance (Ω / $)$	
Top metal	0.05-0.1	
Polysilicon	150-200	
Diffusion	50-150	

- Intrinsic resistance
- In linear region

$$I_{DS} = k \left[(V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right]$$

$$R_{eq} = \frac{1}{k (V_{GS} - V_T)} = \frac{1}{\mu C_{ox}} \frac{W}{L} (V_{GS} - V_T) = \frac{1}{\mu C_{ox}} \frac{L}{W}$$

$$R_S = \frac{1}{\mu C_{ox}} (V_{GS} - V_T)$$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

- Intrinsic resistance
 - Dependent on C_{ox} and carrier mobility
 - Temperature variant
 - Typically 1000-30000 Ω /

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

Capacitance Estimation

- Capacitance in concert with interconnect resistance is the primary determinant of interconnect delays
- Intrinsic capacitance
- Interconnect capacitances

- Overlap related capacitance
- Channel related capacitances
 Dependent on region of operation
- Diffusion to substrate capacitances

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

Overlap related capacitance

$$C_{GSO} = C_{DSO} = \frac{\varepsilon_{ox}}{t_{ox}} A_{overlap} = C_{ox} x_D W$$

Usually can be ignored since x_D is very small

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

- Channel related capacitances
 - Cutoff
 - No channel
 - Therefore, no gate to source or drain capacitances

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

- Channel related capacitances
 - Cutoff
 - No channel
 - Therefore, no gate to source or drain capacitances
 - As gate voltage increases, depletion region deepens, causing C_{dep} to decrease, and thus decrease the gate to body capacitance
 - As gate voltage nears V_T , inversion channel forms causing a barrier for the gate to body capacitance

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

- Channel related capacitances
 - Saturation
 - · Channel is pinched off
 - Gate to source capacitance exists
 - Gate to drain capacitance is zero

$$C_{GCB} = \frac{2}{3}C_{ox}WL$$
$$C_{GCD} = 0$$

© John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

- Channel related capacitances
 - Linear
 - Channel is formed
 - Therefore, no gate to body capacitance

$$C_{GCS} = C_{GCD} = \frac{C_{ox}WL}{2}$$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

- Channel related capacitance
- Worst case $C_g = C_{ox}WL$
- + C_{ox} ranges from 1.7-6 fF/ μ m²
- For a 1.5 μ by 1.5 μ channel

 $C_g = (6)(1.5)(1.5)$ = 13.5 fF

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

- Diffusion to substrate capacitance
- Junction capacitance

 $C_{diff} = C_j L_S W$

C_i is the bottom-plate capacitance per area

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

Side wall or periphery capacitance (drain and source sidewalls)

• C_{isw} is the side wall capacitance per linear distance

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

- C_i is typically .5-2 fF/ μ m²
- C_{jsw} is typically .28-.4 fF/µm
- For a 1.5 μ by 1.5 μ diffusion region

$$C_{diff} = C_{j}L_{S}W + C_{jsw}(2L_{S} + W)$$

= 2(1.5)(1.5) + .28(3.0 + 1.5)
= 5.8 fF

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

Interconnect capacitances

$$C_{plate} = \frac{\varepsilon_{di}}{t_{di}} WL$$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

Interconnect capacitances

- When h is comparable in magnitude to t, fringing electric fields can increase the total effective parasitic capacitance
- The effect is magnified as the ratio of w to h decreases
- If w=h, the effective capacitance can be up to 10 times C_{plate}

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

Cross-Interconnect capacitances

- Can be very difficult to compute
- Requires three dimensional field simulations
- Usually provided by process measurements

Cross Interconnect Capacitances

.25µm process	Area (fF/μm ²⁾	Perimeter (fF/ μ m)
Poly over oxide	.088	.054
Metal1 over oxide	.030	.040
Metal2 over oxide	.013	.025
Metal1 over poly	.057	.054
Metal2 over poly	.017	.029
Metal2 over Metal1	.036	.045

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

Interconnect capacitances

- Can dominate the effect of the gate capacitance
- Example: 100µm metal1 line over oxide
 - Area capacitance: $100\mu m \times 1\mu m \times .030 fF/\mu m^2 = 3 fF$
 - Fringing capacitance: $100\mu m \times 2 \times .040 fF/\mu m = 8.0 fF$
 - Total capacitance: 11 fF

Inductance

- For the most part is not an issue
- Wire inductance is on the order of 10s of pH per mm
- Small enough to ignore except for very high performance chips
- Inductance is usually higher for I/O interfaces

Spring 2005

Lecture 5

Interconnect delay

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

Interconnect delay

- •More accurate than lumped RC model
- •More difficult to solve for large N
- •Need full-scale SPICE simulation

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

Elmore Delay

 Single line model not useful for generalized RC tree networks

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5

Next class

More Performance Characterization

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 5