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Performance Characterization



Topics

« Performance Characterization
— Resistance Estimation
— Capacitance Estimation

— Inductance Estimation
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Performance Characterization

- Inverter Voltage Transfer Curve
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VDD
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Performance Characterization

- Voltage versus Time curve (ideal)
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Performance Characterization
- Gate delay

- Voltage versus Time curve
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VDD \

time
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Performance Characterization

- Interconnect delay
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Performance Characterization

- Delay
— Primary determinant of the speed of a circuit

— Due to resistances and capacitances
- Intrinsic resistance and capacitance
« Extrinsic resistance and capacitance
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Resistance Estimation

- Dependent on resistivity of material
» Directly proportional to length

- |nversely proportional to cross-sectional
area
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Resistance Estimation
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Resistance Estimation

« Rg Is the sheet resistance expressed in
terms of Q/[]
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Resistance Estimation

Interconnect Material

Typical Resistance (€2/[])

Top metal 0.05-0.1
Polysilicon 150-200
Diffusion 50-150
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Resistance Estimation
« Intrinsic resistance

 In linear region

ucC,, (VGS - VT)
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Resistance Estimation

- Intrinsic resistance
— Dependent on C_, and carrier mobility

— Temperature variant
— Typically 1000-30000 o/
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Capacitance Estimation

- Capacitance in concert with interconnect
resistance is the primary determinant of
iInterconnect delays

- Intrinsic capacitance

- |Interconnect capacitances
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MQOS device capacitances

- Overlap related capacitance

- Channel related capacitances

— Dependent on region of operation

. Diffusion to substrate capacitances
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MQOS device capacitances

Source

Drain

Gate
I L 1 1 I
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MQOS device capacitances
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MQOS device capacitances

- Overlap related capacitance

E
CGSO = CDSO = tox A

ox

=C, x,W

overlap

- Usually can be ignored since xg is very
small
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MQOS device capacitances

- Channel related capacitances

— Cutoff

« No channel
- Therefore, no gate to source or drain capacitances
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MQOS device capacitances

Gate
Source— | | | —— Drain
—
n+ — Cd n+ C _ COCdep
°p GCB — C +C
0 + dep
C,=C, WL
E ..
Cdep — schon WL
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MQOS device capacitances

- Channel related capacitances

— Cutoff

« No channel
- Therefore, no gate to source or drain capacitances

— As gate voltage increases, depletion region deepens,
causing C,, to decrease, and thus decrease the
gate to body capacitance

— As gate voltage nears V, inversion channel forms
causing a barrier for the gate to body capacitance
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MQOS device capacitances

gb

COCdep
C,+C

dep

gs
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MQOS device capacitances

- Channel related capacitances

— Saturation
- Channel is pinched off
- Gate to source capacitance exists

- Gate to drain capacitance is zero

CGCB = %CoxWL

CGCD =0
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MQOS device capacitances

- Channel related capacitances

— Linear
- Channel is formed
- Therefore, no gate to body capacitance
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MQOS device capacitances

CGCB
CGCS
CGCD
C0
Co
! C
COCdep 5 0
Cy+C,,
Vt VDS + Vt Vgs
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MQOS device capacitances

Cg
C0
j% B
COCdep j
Cy+C,,
Vt VDS + Vt VgS
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MQOS device capacitance

Channel related capacitance

Worstcase ¢,=C, WL

C,, ranges from 1.7-6 fF/um?

For a 1.5u by 1.5u channel

C, = (6)(1.5)(1.5)
—13.5fF
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MQOS device capacitances

- Diffusion to substrate capacitance

 Junction capacitance

Chp =C LW

diff
» G, is the bottom-plate capacitance per area
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MQOS device capacitances

- Side wall or periphery capacitance (drain and source

sidewalls) ]
LS <>

w 4%‘

Cup =C QL+ W)

Jjsw
» Ci Is the side wall capacitance per linear distance
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MQOS device capacitances

- G, is typically .5-2 fF/um?
» Cis Is typically .28-.4 fF/um
- Fora 1.5u by 1.5u diffusion region

Cup =C LW +C, (2L + W)
=2(1.5)(1.5) + .28(3.0 + 1.5)
~5.8fF
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Interconnect capacitances

< W

= Sawy,

ZLa’i

C

plate
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Interconnect capacitances

(i

- When h is comparable in magnitude to t,

fringing electric fields can increase the total
effective parasitic capacitance

- The effect is magnified as the ratio of w to h
decreases

. If w=h, the effective capacitance can be up to
10 times C

plate
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Cross-Interconnect
capacitances

A H A

- Can be very difficult to compute
« Requires three dimensional field simulations

- Usually provided by process measurements
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Cross Interconnect

Capacitances

.25um process

Area (fF/um?

Perimeter (fF/um)

Poly over oxide .088 .054
Metal1 over oxide .030 .040
Metal2 over oxide .013 .025
Metal1 over poly .057 .054
Metal2 over poly .017 .029
Metal2 over Metal1 .036 .045
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Interconnect capacitances

- Can dominate the effect of the gate
capacitance

- Example: 100um metal1 line over oxide

— Area capacitance: 100um x 1um x .030fF/um?2 = 3 fF
— Fringing capacitance: 100um x 2 x .040fF/um = 8.0 fF

— Total capacitance: 11 fF
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Inductance

« For the most part is not an issue

- Wire inductance is on the order of 10s of pH per
mm

- Small enough to ignore except for very high
performance chips

 Inductance is usually higher for 1/O interfaces
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Delay Definitions

Von

» time

+
tahl

: 1:dlh
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Interconnect delay

V VAL V *Lumped RC model

out

Charge V,, to V, .
-The transient output voltage is Vo (?) = VDD(I_e RC)

vV _Lamn
% = VDD(I—e RC

Tan _ —ln(l)
RC 2

t, ~.69RC
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Interconnect delay

*Distributed RC ladder model
R/N R/N R/N R/N

V, —— AN e e e Vo

——CI/N C/N ——CI/N ——CI/N

N N N

*More accurate than lumped RC model
*More difficult to solve for large N
*Need full-scale SPICE simulation
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Elmore Delay

- Single line model not useful for
generalized RC tree networks
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Next class

« More Performance Characterization
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