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TopicsTopics

•• Performance CharacterizationPerformance Characterization

–– Interconnect DelayInterconnect Delay

–– Gate DelayGate Delay

–– Switching Switching CharacteristicsCharacteristics
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Interconnect delayInterconnect delay

•Lumped RC modelVin Vout

•Charge Vin to VDD

•The transient output voltage is
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Interconnect delayInterconnect delay

•Distributed RC ladder model

Vin Vout

C/N C/N C/N C/N

R/N R/N R/N R/N

•More accurate than lumped RC model

•More difficult to solve for large N

•Need full-scale SPICE simulation
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Elmore DelayElmore Delay

•• Single line model not useful forSingle line model not useful for
generalized RC tree networksgeneralized RC tree networks

Vin

C1 C2 C3

C4

R1 R2 R3

R4
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Elmore DelayElmore Delay
•• First order calculation of time constant ofFirst order calculation of time constant of

the circuitthe circuit

€ 

td = C j Rk
k∈path
∑

j=1

N

∑

Vin
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C4

R1 R2 R3

R4

€ 

td 3 = R1C1 + R1 + R2( )C2 + R1 + R2 + R3( )C3 + R1C4

td 4 = R1C1 + R1C2 + R1C3 + R1 + R4( )C4
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Elmore DelayElmore Delay

€ 

td = C j Rk
k∈path
∑

j=1

N

∑

Vin

C1 C2 C3

C4

R1 R2 R3

R4

€ 

td 3 = R1 C1 + C2 + C3 + C4( ) + R2 C2 + C3( ) + R3C3

td 4 = R1 C1 + C2 + C3 + C4( ) + R4C4
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Elmore DelayElmore Delay

Vin Vout

C/N C/N C/N C/N

R/N R/N R/N R/N
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Interconnect DelayInterconnect Delay

€ 

td = 8Ω 20 fF +10 fF( ) + 4Ω 10 fF( )
= .28ps

10fF

4Ω
Vin

8Ω

20fF
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Interconnect DelayInterconnect Delay

Vin

10fF

8Ω

4Ω

€ 

td = 8Ω 20 fF +10 fF +10 fF +10 fF( ) + 4Ω 10 fF( )
= .44 ps

10fF

10fF

20fF

4Ω

4Ω
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Interconnect DelayInterconnect Delay

•• Fanout Fanout EffectsEffects

–– Lines with multiple loads will have longer delaysLines with multiple loads will have longer delays

•• ClocksClocks

•• Data busesData buses

•• Control linesControl lines

–– SolutionsSolutions

•• Wider and thicker lines for special signalsWider and thicker lines for special signals

•• Buffer driversBuffer drivers
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Interconnect DelayInterconnect Delay

Vin Vout

C/N C/N C/N C/N

R/N R/N R/N R/N
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Interconnect DelayInterconnect Delay

€ 

td =
RC
2

=
1
2
r l
w
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 
 

 
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 calw + cp l + w( )( )

≈
1
2
rcal

2

•• Delay is proportional to the square of theDelay is proportional to the square of the
lengthlength

•• Try to avoid long linesTry to avoid long lines
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Interconnect DelayInterconnect Delay

5000µ metal1 (0.5µ wide)

•Interconnect resistance

•Interconnect capacitance

•Intrinsic load capacitance€ 

R = .07 5000µ
0.5µ

= 700Ω

€ 

Cwire = .03 ⋅ 5000µ ⋅ 0.5µ + .044 ⋅ 2 ⋅ 5000µ + 0.5µ( ) = 515 fF

•Propagation delay

€ 

tp =
RCwire

2
+ RCin =

700 ⋅ 515 fF
2

+ 700 ⋅ 5 fF =184 ps€ 

Cin ≈ 5 fF
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Interconnect DelayInterconnect Delay

•• Avoid long interconnect delays using buffersAvoid long interconnect delays using buffers

2500µ metal1 (0.5µ wide)

•Interconnect resistance

•Interconnect capacitance

•Intrinsic load capacitance€ 

R = .07 2500µ
0.5µ

= 350Ω

€ 

Cwire = .03 ⋅ 2500µ ⋅ 0.5µ + .044 ⋅ 2 ⋅ 2500µ + 0.5µ( ) = 258 fF

•Propagation delay

€ 

tp = 2 ⋅ RCwire

2
+ RCin
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2500µ metal1 (0.5µ wide)

€ 

Cin ≈ 5 fF
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Interconnect DelayInterconnect Delay

•• Avoid long interconnect delays using widerAvoid long interconnect delays using wider
lineslines

5000µ metal1 (5µ wide)

•Interconnect resistance

•Interconnect capacitance

•Intrinsic load capacitance€ 

R = .07 5000µ
5µ

= 70Ω

€ 

Cwire = .03 ⋅ 5000µ ⋅ 5µ + .044 ⋅ 2 ⋅ 5000µ + 5µ( ) =1190 fF

€ 

Cin ≈ 5 fF

•Propagation delay

€ 

tp =
RCwire

2
+ RCin =

70 ⋅1190 fF
2

+ 70 ⋅ 5 fF = 42ps
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Interconnect delayInterconnect delay

•• Interconnect sizingInterconnect sizing

–– Adjust delaysAdjust delays

–– Prevent metal migrationPrevent metal migration

–– Power supply noise and signal integrityPower supply noise and signal integrity
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Interconnect DelayInterconnect Delay

€ 

td = 2Ω 20 fF +10 fF( ) + 4Ω 10 fF( )
= .10ps

10fF

4Ω
Vin

2Ω

20fF

500µ
500µ

1µ2µ
RS=.08 Ω/

Ca=.02 fF/µ2

€ 

td = 4Ω 10 fF + 20 fF( ) + 2Ω 20 fF( )
= .16ps
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•• Directional BehaviorDirectional Behavior
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Switching DelaySwitching Delay

•• The intrinsic delay of a gateThe intrinsic delay of a gate

•• Transistor sizing can affect the delayTransistor sizing can affect the delay

•• Extrinsic capacitances can affect theExtrinsic capacitances can affect the
delaydelay
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Delay DefinitionsDelay Definitions

time

VOH

time

VOH

(VOH+ VOL)/2

VOL

(VOH+ VOL)/2

tpHL

V90%

V10%

tf

tpLH

tr
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Switching DelaySwitching Delay

•• Fall time analysisFall time analysis

VOUTVIN
Vout>VDD-Vt

Saturated

IC
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Fall time analysisFall time analysis

•• Saturated ModeSaturated Mode

€ 

IC = IDS

−CL
dVout
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Fall time analysisFall time analysis
•• Linear ModeLinear Mode

€ 

IC = IDS

−CL
dVout

dt
= kn VDD −Vtn( )Vout −
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Fall time analysisFall time analysis
•• Linear ModeLinear Mode
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Fall time analysisFall time analysis
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Fall time analysisFall time analysis

•• Fall time is proportional to load capacitance andFall time is proportional to load capacitance and
inversely proportional to Vinversely proportional to VDDDD and  and kknn

•• Decreasing the supply voltage will increase theDecreasing the supply voltage will increase the
fall timefall time

•• Increasing the transistor width Increasing the transistor width will increasewill increase  kk
which willwhich will reduce the fall time reduce the fall time

•• Changing these three parameters can causeChanging these three parameters can cause
conflicting goalsconflicting goals
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Rise time analysisRise time analysis

€ 
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Rise time analysisRise time analysis

€ 

t f = tr

Kn
CL

knVDD

= Kp
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kpVDD
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•• For equal fall times and rise timesFor equal fall times and rise times
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Propagation DelayPropagation Delay

•• As with interconnect delay, find theAs with interconnect delay, find the
equivalent resistance and loadequivalent resistance and load
capacitance of the transistorcapacitance of the transistor

VOUT

IC

€ 

tpHL = .69ReqCL
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Propagation DelayPropagation Delay

•• Propagation delay is the time for voltage to reachPropagation delay is the time for voltage to reach
half way point - so integrate from half way point - so integrate from VVDDDD to  to VVDDDD//22

€ 

Req = average Ron (t)( ) =
1

t2 − t1
VDS (t)
IDS (t)t1

t2∫

€ 

Req =
1

VDD 2 −VDD

VDS (t)
IDS (t)VDD

VDD 2

∫ dVDS

•• For the output range we are interested in, theFor the output range we are interested in, the
transistor is always in saturationtransistor is always in saturation
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−2
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Propagation DelayPropagation Delay
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Propagation DelayPropagation Delay

•• Load capacitanceLoad capacitance
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Propagation DelayPropagation Delay

•• Load capacitanceLoad capacitance

–– Intrinsic capacitance - sum of capacitancesIntrinsic capacitance - sum of capacitances
at drain - Cat drain - CGDGD+ C+ CDBDB

CGD

CGCS

CGCB
CSB

CDB

CGCS

CGD

CGCB

CSB

CDB
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Propagation DelayPropagation Delay

•• Intrinsic CapacitanceIntrinsic Capacitance

–– CCGDGD is composed solely of overlap capacitance is composed solely of overlap capacitance

•• The transistors are either in cutoff or inThe transistors are either in cutoff or in
saturation, so no channel capacitance existssaturation, so no channel capacitance exists

––  The actual load capacitance relative to ground The actual load capacitance relative to ground
is 2Cis 2CGDOGDO because of Miller efffect because of Miller efffect
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Propagation DelayPropagation Delay

•• Extrinsic capacitance is composed of wire capacitanceExtrinsic capacitance is composed of wire capacitance
and input capacitance of fanoutand input capacitance of fanout

•• Input capacitance is composed of overlap capacitanceInput capacitance is composed of overlap capacitance
and channel capacitanceand channel capacitance

–– Overlap capacitance is COverlap capacitance is CGDOGDO + C + CGSOGSO.  Miller effect is.  Miller effect is
ignored because Vignored because Voutout is assumed to be constant is assumed to be constant

–– Channel capacitance is CChannel capacitance is CoxoxWL.  Assume worst caseWL.  Assume worst case

•• All capacitances are roughly proportional to WAll capacitances are roughly proportional to W

•• Equivalent resistance is inversely proportional to WEquivalent resistance is inversely proportional to W

€ 

tpLH = 0.69Req 2CGDOn + 2CGDOp + CDBn + CDBp + Cext( )
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NextNext class class

•• Delay AnalysisDelay Analysis

•• CMOS Logic DesignCMOS Logic Design

•• Chapter 6.1 and 6.2Chapter 6.1 and 6.2


