Topics

- Performance Characterization
 - Delay Analysis
 - Transistor Sizing
- Digital Design Review
- CMOS Logic Design

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

Interconnect Delay

Lecture 7

Interconnect Delay

Lecture 7

• Avoid long interconnect delays using buffers

Dept. of Electrical and Computer Engineering University of Connecticut

© John A. Chandy

Interconnect Delay

Avoid long interconnect delays using wider lines

 Propagation delay is proportional to intrinsic resistance and load capacitance

 $t_{pHL} = 0.69 R_{eqn} C_L$

 Take average of p and n delays for overall propagation delay

$$t_p = 0.69 C_L \left(\frac{R_{eqn} + R_{eqp}}{2} \right)$$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

• Propagation delay is inversely proportional to *k*

$$t_{pHL} = 0.69 \left(\frac{3}{4} \frac{V_{DD}}{I_{DSATn}} \right) C_L$$
$$= 0.52 \left(\frac{V_{DD}}{k_n \frac{(V_{DD} - V_{Tn})^2}{2}} \right) C_L$$
$$\approx \left(\frac{C_L}{k_n V_{DD}} \right)$$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

- Propagation delay is inversely proportional to k
 - When device is velocity saturated

$$\begin{split} t_{pHL} &= 0.69 \bigg(\frac{3}{4} \frac{V_{DD}}{I_{DSATn}} \bigg) C_L \\ &= 0.52 \bigg(\frac{V_{DD}}{k_n V_{DSATn} \bigg(V_{DD} - V_{Tn} - \frac{V_{DSATn}}{2} \bigg)} \bigg) C_L \\ &\approx 0.52 \bigg(\frac{C_L}{k_n V_{DSATn}} \bigg) \end{split}$$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

- Like the fall time and rise times, the delay time is affected by the load capacitance and the transistor *k*'s
- Reduce delay by
 - Reducing C_L
 - Increasing k or increasing W/L ratio
 - Increasing V_{DD} (to a point)

- In order to equalize the rise and fall delays, the transistor equivalent resistances must be equal
- Typically that means the pMOS width must be 2-3 times the width of the nMOS to have equal falling and rising delay times
- However, this does not mean that overall delay has been minimized

 Assume that the inverter is cascaded to another inverter

$$t_{p} = 0.69R_{eq} \left(\left(C_{dp1} + C_{dn1} \right) + \left(C_{gp2} + C_{gn2} \right) + C_{W} \right)$$

• Scale the pmos transistors by a factor of β $t_p = 0.69 \left(\frac{R_{eqn} + R_{eqp} / \beta}{2} \right) \left((\beta C_{dn1} + C_{dn1}) + (\beta C_{gn2} + C_{gn2}) + C_W \right)$ $= 0.345 \left(R_{eqn} + \frac{R_{eqp}}{\beta} \right) \left((\beta + 1) (C_{dn1} + C_{gn2}) + C_W \right)$ • Optimal β $\beta = \sqrt{\frac{R_{eqp}}{R_{eqn}}} \approx \sqrt{\frac{k_n V_{DSATn}}{k_p V_{DSATp}}}$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

 Size the transistors based on delay requirements and capacitor load

$$- \underbrace{R_n = R_p = 11K\Omega}_{-1} \qquad t_d = 11ns$$

$$- \underbrace{R_n = R_p = 1.1K\Omega}_{-1.1K\Omega} \quad t_d = 1.1ns$$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

- Increasing transistor size allows us to drive large capacitances
- Problems
 - Increases area
 - Increases input capacitance

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

Use cascaded inverters

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

$$t_{p} = nfRC$$
$$= \frac{\ln\left(\frac{C_{L}}{C}\right)}{\ln f} fRC$$

Minimum delay is reached when *f* is equal to *e*(~2.72)

• At optimum,
$$n = \ln\left(\frac{C_L}{C}\right)$$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

$$-\bigvee_{L}^{R=11K\Omega,C=9fF} n = \ln\left(\frac{C_L}{C}\right) = \ln\left(\frac{1pF}{9fF}\right) = 4.71$$

Set n=5, and f=3 to use integral values

$$t_{p} = (n-1)fRC + \frac{R}{f^{n-1}}C_{L}$$

= (5-1) · 3 · 11K\O · 9fF + $\frac{11K\Omega}{3^{5-1}}1pF$
= 1.32ns

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

- Cascaded inverter staging will use more area than a single inverter
- The input capacitance is much lower
- The number of stages and stage ratio can be adjusted to get faster delay times or smaller area
- When you take into account intrinsic capacitance, the optimal *f* is a little closer to 3.6

Topics

- Digital Design Review
- CMOS Design

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

- Basic operators
 - AND

$$f(A,B) = A \cdot B = A \cap B$$

А	В	A•B
0	0	0
0	1	0
1	0	0
1	1	1

– OR

$$f(A,B) = A + B = A \bigcup B$$

$$A \longrightarrow A + B$$

$$B \longrightarrow A + B$$

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

- Basic operators
 - NAND

А	В	A•B
0	0	1
0	1	1
1	0	1
1	1	0

– NOR

	Α	В	A+B
	0	0	1
	0	1	0
	1	0	0
ſ	1	1	0

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

- Basic operators
 - XOR

Α	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

• Unity operators

A+0=A

 $A \cdot 1 = A$

• Complement

$$A + \overline{A} = 1$$
$$A \cdot \overline{A} = 0$$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

Commutativity

$$A + B = B + A$$
$$A \cdot B = B \cdot A$$

Associativity

$$A + (B + C) = (A + B) + C$$
$$A \cdot (BC) = (AB) \cdot C$$

• Distributive Law

$$A \cdot (B + C) = AB + AC$$
$$A + BC = (A + B) \cdot (A + C)$$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

Duality

 $f(A,B,1,0,\cdot,+) = f(\overline{A},\overline{B},0,1,+,\cdot)$

$$A + A = A$$

$$1 + A = 1$$

$$A \cdot A = A$$

$$0 \cdot A = 0$$

$$A + AB = A$$

$$A \cdot (A + B) = A$$

$$A \cdot (\overline{A} + B) = A \cdot B$$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

- Duality
 - Consensus

$$AB + \overline{A}C + BC = AB + \overline{A}C$$
$$(A + B) \cdot (\overline{A} + C) \cdot (B + C) = (A + B) \cdot (\overline{A} + C)$$
$$- \text{DeMorgan's Theorem}$$
$$\overline{A + B} = \overline{A}\overline{B}$$

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

DeMorgan's Theorem

$$\overline{A + B} = \overline{A}\overline{B}$$
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

Digital Logic

Truth Tables

А	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

- Representation of the function to be realized
- Sum of Products representation
 - Sum of minterms $F = \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC} + A\overline{BC} + A\overline{BC}$
- Product of Sums representation
 - Product of maxterms

$$F = \left(A + B + C\right) \cdot \left(A + \overline{B} + \overline{C}\right) \cdot \left(\overline{A} + \overline{B} + \overline{C}\right)$$

© John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

Logic Minimization

Minimizing SOP representation to MSP

 $F = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$

Using Karnaugh Map

 $\overline{B} + \overline{B}C$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

Logic Minimization

- Minimizing POS representation to MPS
- Using Karnaugh Map

$$F = \left(A + B + C\right) \cdot \left(A + \overline{B} + \overline{C}\right) \cdot \left(\overline{A} + \overline{B} + \overline{C}\right)$$

	00	01	11	10
0	0	1	1	1
1	1	0	0	1

$$F = \left(A + B + C\right) \cdot \left(\overline{B} + \overline{C}\right)$$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

Inverter

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

ECE 249 VLSI Design and Simulation
Spring 2005
Lecture 7

Pull-down truth table			
А	В	OUT	
0	0	Х	
0	1	0	
1	0	0	
1	1	0	

Pull-up truth table				
А	A B OUT			
0	0	1		
0	1	Х		
1	0	Х		
1	1	Х		

NAND

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

General CMOS combinational logic

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

$$F = B\overline{C} + A\overline{B} + \overline{B}C$$
$$= \overline{\left(\overline{B} + C\right) \cdot \left(\overline{A} + B\right) \cdot \left(B + \overline{C}\right)}$$

Pulldown

© John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

$$F = (A + B + C) \cdot (\overline{B} + \overline{C})$$
$$= \overline{\overline{A}\overline{B}\overline{C}} + \overline{B}C$$
$$F' = (\overline{A} + \overline{B} + \overline{C}) \cdot (B + C)$$
Pullup

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7

ECE 249 VLSI Design and Simulation

Spring 2005

Lecture 7

Next class

- Multi-input delay analysis
- Homework 2 due 2/15
- Chapter 6 and 7

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 7