Topics

- Power Dissipation
- Technology Scaling
- Final Project

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11

Where Does Power Go in CMOS?

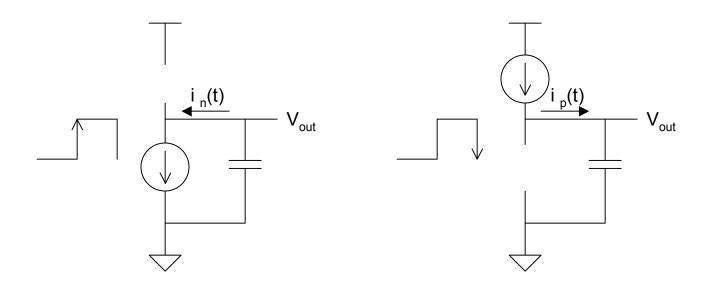
Dynamic Power Consumption

Charging and Discharging Capacitors

Short Circuit Currents

Short Circuit Path between Supply Rails during Switching

• Leakage


Leaking diodes and transistors

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11

- Static power dissipation
 - In theory, CMOS has no static power dissipation
 - There is a slight current (subthreshold leakage current and gate leakage current) on the order of .1-.5nA per device
 - At 5V supply voltage, .5-2.5 nW static power dissipation per device
 - Million gate chip will have .5-2.5 mW static power dissipation

- Dynamic power dissipation
 - Proportional to load capacitance and frequency
 - Proportional to square of the supply voltage
 - Current trend is to reduce supply voltages to reduce power
 - · Reduced supply voltage will increase delays however
 - Not dependent on device parameters

- Dynamic power dissipation
 - Switching causes short bursts of current flow which will cause power dissipation

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11

Dynamic power dissipation

$$P = \frac{1}{T} \left[\int_{0}^{\frac{T}{2}} i_{n}(t) V_{out} dt + \int_{\frac{T}{2}}^{T} i_{p}(t) (V_{DD} - V_{out}) \right]$$

$$= \frac{1}{T} \left[-C_{L} \int_{V_{DD}}^{0} V_{out} dV_{out} + C_{L} \int_{0}^{V_{DD}} (V_{DD} - V_{out}) dV_{out} \right]$$

$$= \frac{C_{L}}{T} \left[\frac{V_{DD}}{2} + \frac{V_{DD}}{2} \right]$$

$$= C_{L} V_{DD}^{2} f$$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11

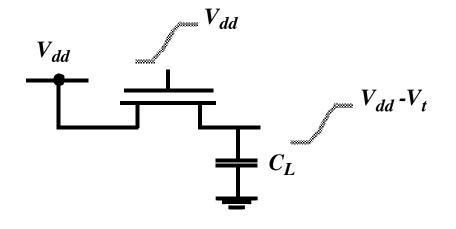
I

• Example

$$V_{DD} = 5V$$

$$f = 1GHz$$

$$C_L = 1pF$$

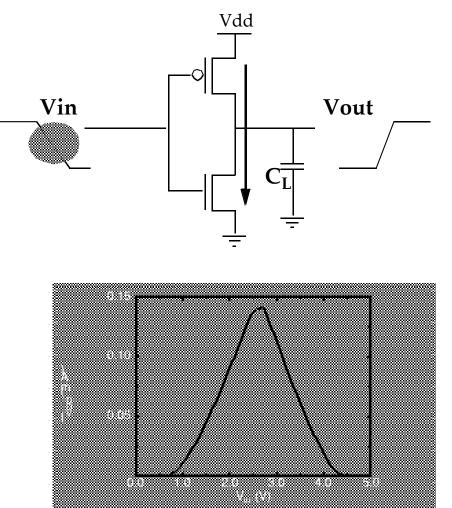

$$P = C_L V_{DD}^2 f$$

$$= 1pf \cdot 5^2 \cdot 1GHz$$

$$= 25mW$$

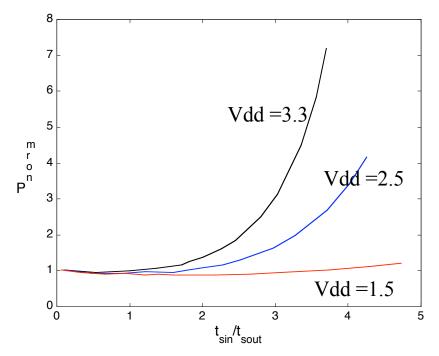
ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11

Modification for Circuits with Reduced Swing


$$E_{0} \rightarrow C_L \cdot V_{dd} \cdot (V_{dd} - V_t)$$

• Can exploit reduced swing to lower power (e.g., reduced bit-line swing in memory)

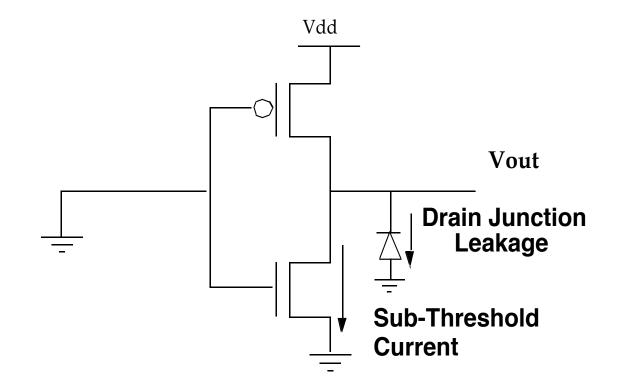
ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11


- Short circuit current dissipation
 - Short circuit current occurs when both transistors are on temporarily
 - Proportional to the ratio of rise time to T
 - Since the rise time is usually much less than T, it can be usually ignored

Short Circuit Currents

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11

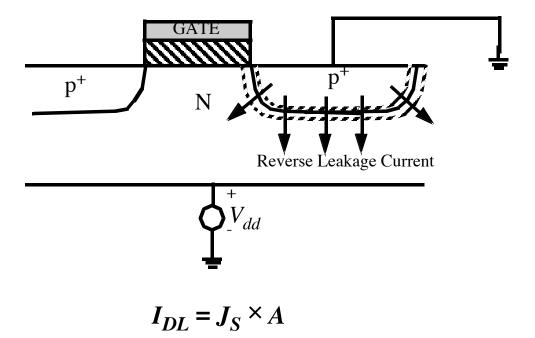
Minimizing Short-Circuit Power


 Keep the input and output rise/fall times the same (< 10% of Total Consumption) from [Veendrick84]

(IEEE Journal of Solid-State Circuits, August 1984)

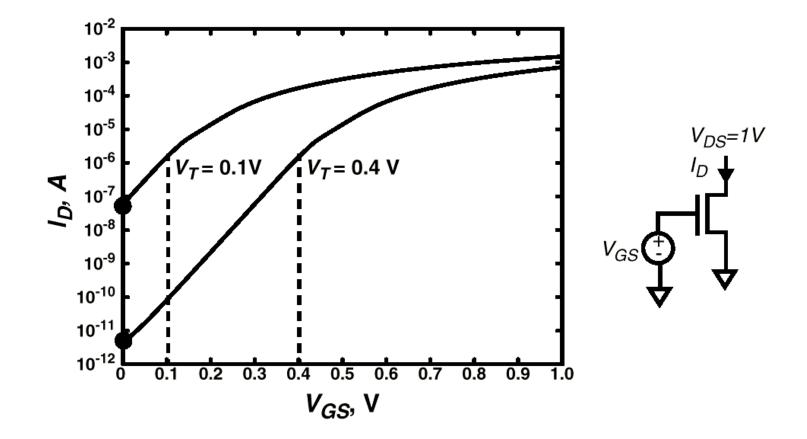
• If $V_{dd} < V_{tn} + |V_{tp}|$ then short-circuit power can be *eliminated*!

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11



Sub-threshold current one of most compelling issues in low-energy circuit design!

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11


Reverse-Biased Diode Leakage

 $JS = 10-100 \text{ pA}/\mu\text{m2}$ at 25 deg C for 0.25 μ m CMOS JS doubles for every 9 deg C!

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11

Subthreshold Leakage Component

Leakage control is critical for low-voltage operation

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11

Principles for Power Reduction

- Prime choice: Reduce voltage!
 - Recent years have seen an acceleration in supply voltage reduction
 - Design at very low voltages still open question (0.6 … 0.9 V by 2010!)
- Reduce switching activity
- Reduce physical capacitance
 - Device Sizing: for F=20
 - *f_{opt}*(energy)=3.53, *f_{opt}*(performance)=4.47

Goals of Technology Scaling

- Make things cheaper:
 - Want to sell more functions (transistors) per chip for the same money
 - Build same products cheaper, sell the same part for less money
 - Price of a transistor has to be reduced
- But also want to be faster, smaller, lower power

Technology Scaling

- Goals of scaling the dimensions by 30%:
 - Reduce gate delay by 30% (increase operating frequency by 43%)
 - Double transistor density
 - Reduce energy per transition by 30%
- Die size used to increase by 14% per generation
- Technology generation spans 2-3 years

Technology Scaling Models

• Full Scaling (Constant Electrical Field)

ideal model — dimensions and voltage scale together by the same factor S

Fixed Voltage Scaling

most common model until recently — only dimensions scale, voltages remain constant

General Scaling

most realistic for todays situation — voltages and dimensions scale with different factors

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11

Scaling Relationships for Long Channel Devices

Parameter	Relation	Full Scaling	General Scaling	Fixed Voltage Scaling
W, L, t _{ox}		1/S	1/S	1/S
V _{DD} , V _T		1/S	1/U	1
N _{SUB}	V/W _{depl} ²	S	S²/U	S ²
Area/Device	WL	1/S ²	1/S ²	1/S ²
Cox	1/t _{ox}	S	S	S
CL	C _{ox} WL	1/S	1/S	1/S
k _n , k _p	C _{ox} W/L	S	S	S
I _{av}	$k_{n,p} V^2$	1/S	S/U ²	S
t _p (intrinsic)	C _L V / I _{av}	1/S	U/S ²	1/S ²
Pav	$\frac{C_L V^2 / t_p}{C_L V^2}$	1/S ²	S/U ³	S
PDP	$C_L V^2$	1/S ³	$1/\mathrm{SU}^2$	1/S

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11

Transistor Scaling (velocity-saturated devices)

Parameter	Relation	Full Scaling	General Scaling	Fixed-Voltage Scaling
W , L, t _{ox}		1/S	1/S	1/S
V_{DD} V_T		1/S	1/U	1
N_{SUB}	V/W_{depl}^2	S	S^2/U	S^2
Area/Device	WL	$1/S^2$	$1/S^2$	$1/S^2$
C _{ox}	$1/t_{ox}$	S	S	S
C _{gate}	$C_{ox}WL$	1/S	1/S	1/S
k_{n} k_{n}	C _{ox} W/L	S	S	S
l _{sat}	C _{ox} WV	1/5	1/U	1
Current Density	I _{sat} /Area	S	S^2/U	S^2
Ron	V/I _{sat}	1	1	1
Intrinsic Delay	$R_{on}C_{gate}$	1/S	1/S	1/5
Р	$I_{sat}V$	$1/S^2$	$1/U^2$	1
Power Density	P/Area	1	$S^{l}/U^{\tilde{p}}$	S ²

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11

Technology Generations

95	96	97	98	99	00	01	02	03	04	05	06	07	08	09	10	11	12
350 000	1	2	з	4	5	605 NT		18			998 		10	nered o prot			
-2	-1	250 nm	+	2	з	4	5						- Ter	ny di	Cirra.	in un	1 1 2 2 2
4	ş	Ņ	4	180 rm	4	2	а	4	5		1080		100	ge da tempo	la cy Unic	11-1 1	1.0
da	ų	4	-3	-2	-1	150 nm	1	2	8	4	6		and a there	utere Di au	public In the	Startin 15-0-5	
-8		-6	-5	4	-3	-2	÷	130 nm	1	2	3	4	6	भू - मार र रहेगा			
-71	-10	-9	-8	5	-6	-5	4	3	-2	-1	100 nm	1	2	3	4	5	in a
	10		-11	-10	-9	. 9	-7	-5	.5	-4	-3	-2		70 0m	1	2	з
		125		1.4		-11	-10			-7	-6	-5	-4	-3	-2	-1	50 m

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11

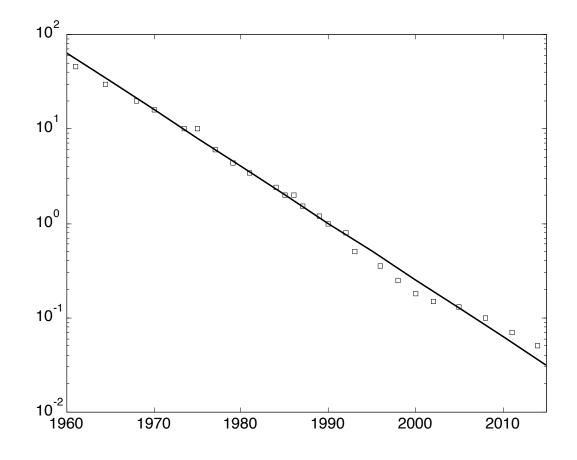
Technology Evolution (2000 data) International Technology Roadmap for Semiconductors

Year of Introduction	1999	2000	2001	2004	2008	2011	2014
Technology node [nm]	180		130	90	60	40	30
Supply [V]	1.5-1.8	1.5-1.8	1.2-1.5	0.9-1.2	0.6-0.9	0.5-0.6	0.3-0.6
Wiring levels	6-7	6-7	7	8	9	9-10	10
Max frequency [GHz],Local-Global	1.2	1.6-1.4	2.1-1.6	3.5-2	7.1-2.5	11-3	14.9 -3.6
Max μP power [W]	90	106	130	160	171	177	186
Bat. power [W]	1.4	1.7	2.0	2.4	2.1	2.3	2.5

Node years: 2007/65nm, 2010/45nm, 2013/33nm, 2016/23nm

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11

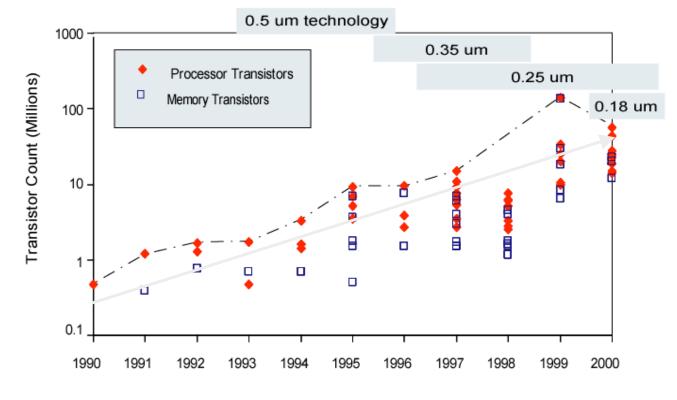
Dept. of Electrical and Computer Engineering University of Connecticut


Technology Evolution (1999)

Year of Introduction	1994	199 7	2000	2003	2006	2009
Channel length (µm)	0.4	0.3	0.25	0.18	0.13	0.1
Gate oxide (nm)	12	7	6	4.5	4	4
V_{DD} (V)	3.3	2.2	2.2	1.5	1.5	1.5
$V_T(\mathbf{V})$	0.7	0.7	0.7	0.6	0.6	0.6
$NMOS I_{Dsat} (mA/\mu m)$ $(@ V_{GS} = V_{DD})$	0.35	0.27	0.31	0.21	0.29	0.33
PMOS I_{Dsat} (mA/µm) (@ $V_{GS} = V_{DD}$)	0.16	0.11	0.14	0.09	0.13	0.16

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11

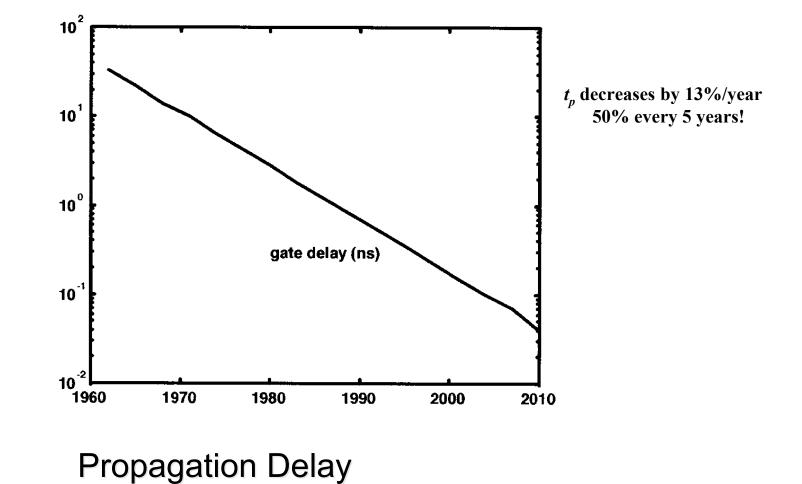
.


Technology Scaling (1)

Minimum Feature Size

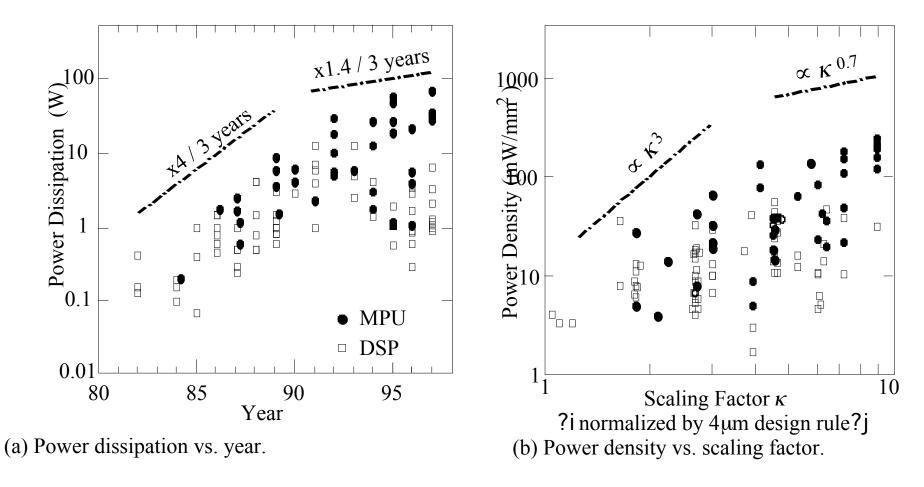
ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11

Technology Scaling (2)



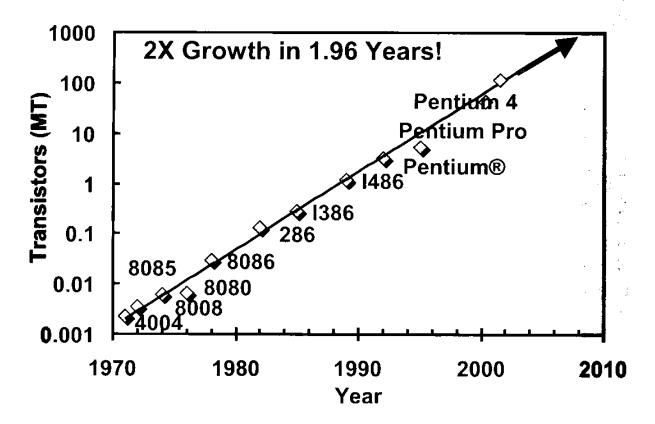
Year

Number of components per chip


ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11

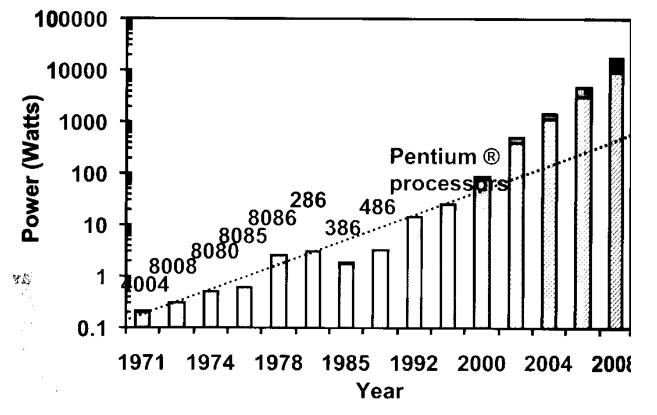
Technology Scaling (3)

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11


Technology Scaling (4)

From Kuroda

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11


μProcessor Scaling

P.Gelsinger: µProcessors for the New Millenium, ISSCC 2001

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11

μ Processor Power

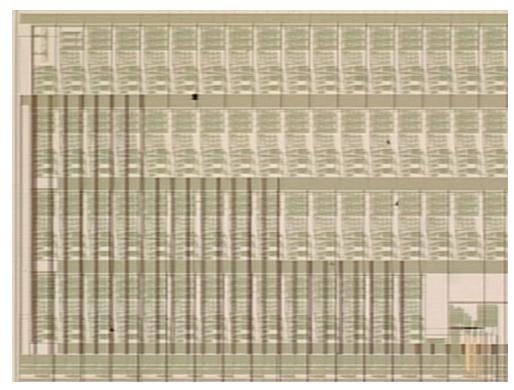
P.Gelsinger: µProcessors for the New Millenium, ISSCC 2001

2010 Outlook

- Performance 2X/16 months
 - 1 TIP (terra instructions/s)
 - 30 GHz clock
- Size
 - No of transistors: 2 Billion
 - Die: 40*40 mm
- Power
 - 10kW!!
 - Leakage: 1/3 active Power

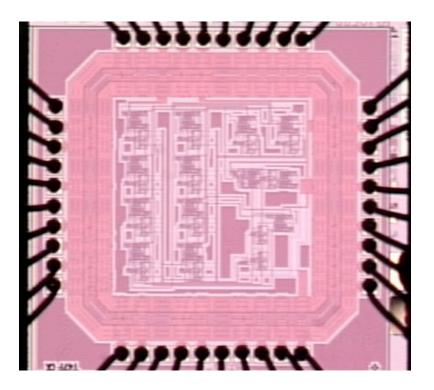
P.Gelsinger: μ Processors for the New Millenium, ISSCC 2001

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11


Some interesting questions

- What will cause this model to break?
- When will it break?
- Will the model gradually slow down?
 - Power and power density
 - Leakage
 - Process Variation

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11


- Teams of two
- Choose your own project
- If you want to fabricate chip, you are limited to a 1.5 mm square - roughly 5-10000 transistors

• Spring 2003 - Search Engine Processor

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11

• Spring 2004 - Encoder/Decoder

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11

- Important Dates
 - Proposal due March 3rd
 - Architecture due March 17th
 - Logic Design due March 31st
 - Demonstrations April 26-28th
 - Final Project Report due April 29th
 - Presentation April 28th

Next Class

- Exam 1
 - Lectures 1-10
 - HW1-3
 - Chapters 1-6

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 11