Topics

- Memory Reliability and Yield
- Control Logic

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

Reliability and Yield

 Semiconductor memories trade off noise-margin for density and performance

Highly Sensitive to Noise (Crosstalk, Supply Noise)

• High Density and Large Die size cause Yield Problems

Y = 100 Number" of Good" Chips" on Wafer Number" of Chips" on Wafer

> © John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

Noise Sources in 1T DRam

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

Transposed-Bitline Architecture

(a) Straightforward bit-line routing

(b) Transposed bit-line architecture

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

Alpha-particles (or Neutrons)

1 Particle ~ **1** Million Carriers

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

Redundancy

Error-Correcting Codes

Example: Hamming Codes

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

Redundancy and Error Correction

16Mbit DRAMs [Kalter90]

SRAM leakage increases with technology scaling

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

Suppressing Leakage in SRAM

Inserting Extra Resistance

Reducing the supply voltage

© John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

Data Retention in DRAM

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

From [ltoh00]

Semiconductor Memory Trends (up to the 90's)

Memory Size as a function of time: x 4 every three years

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

Semiconductor Memory Trends (updated)

Trends in Memory Cell Area

From [ltoh01]

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

Control Logic

- Finite State Machines
- Logic Implementations
 - PLA
 - ROM
 - Multilevel Logic

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

State Machines

- Moore Machine
 - Outputs are dependent only on current state

State Machines

- Mealy Machine
 - Outputs are dependent on current state and inputs

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

Moore Machine

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

Mealy Machine

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

S1	S0	ON	TRIGGER	NS1	NS0	ALARM
0	0	0	Х	0	0	0
0	0	1	Х	0	1	0
0	1	0	Х	0	0	0
0	1	1	0	0	1	0
0	1	1	1	1	0	0
1	0	0	Х	0	0	1
1	0	1	0	0	1	1
1	0	1	1	1	0	1
1	1	Х	Х	Х	Х	Х

 $NS0 = ON \cdot \overline{TRIGGER} + \overline{S1} \cdot \overline{S0} \cdot ON$

 $NS1 = S1 \cdot ON \cdot TRIGGER + S0 \cdot ON \cdot TRIGGER$

 $ALARM = S1 \cdot \overline{S0}$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

Programmable Logic Array

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

PLA Design

 $NS0 = ON \cdot \overline{TRIGGER} + \overline{S1} \cdot \overline{S0} \cdot ON$ $NS1 = S1 \cdot ON \cdot TRIGGER + S0 \cdot ON \cdot TRIGGER$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

PLA Design

 $\overline{NS0} = \overline{\overline{ON} + TRIGGER} + \overline{S1 + S0} + \overline{\overline{ON}}$

 $\overline{NS1} = \overline{\overline{S1} + \overline{ON} + \overline{TRIGGER}} + \overline{\overline{S0} + \overline{ON} + \overline{TRIGGER}}$

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

PLA Design

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

PLA versus ROM

Programmable Logic Array

structured approach to random logic "two level logic implementation" NOR-NOR (product of sums) NAND-NAND (sum of products)

IDENTICAL TO ROM!

□ Main difference

ROM: fully populated PLA: one element per minterm

Note: Importance of PLA's has drastically reduced

- 1. slow
- 2. better software techniques (mutli-level logic synthesis)

Programmable Logic Array

Pseudo-NMOS PLA

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

Dynamic PLA

AND-plane

OR-plane

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

Clock Signal Generation for self-timed dynamic PLA

(a) Clock signals

(b) Timing generation circuitry

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

PLA Layout

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

- Other Control Implementation
 - Microcode (ROM)
 - Multilevel Logic

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16

Next class

- HW5 due March 29th
- Clocking
- Read Chapter 10

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 16