Topics

- Low Power Techniques

Based on Penn State CSE477 Lecture Notes ©2002 M.J. Irwin and adapted from *Digital Integrated Circuits* ©2002 J. Rabaey

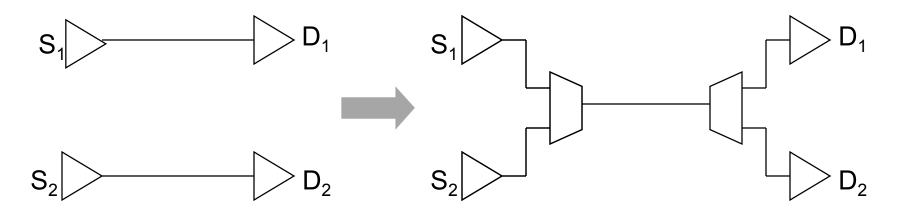
ECE 249 VLSI Design and Simulation Spring 2005 Lecture 20

Review: Energy & Power Equations $\mathbf{E} = \mathbf{C}_{||} \mathbf{V}_{DD}^{2} \mathbf{P}_{0 \rightarrow 1} + \mathbf{t}_{sc} \mathbf{V}_{DD} \mathbf{I}_{peak} \mathbf{P}_{0 \rightarrow 1} + \mathbf{V}_{DD} \mathbf{I}_{leakage}$ $f_{0 \rightarrow 1} = P_{0 \rightarrow 1} * f_{clock}$ $\mathbf{P} = \mathbf{C}_{\mathsf{L}} \, V_{\mathsf{DD}}^2 \, \mathbf{f}_{0 \to 1} + \mathbf{t}_{\mathsf{sc}} \mathbf{V}_{\mathsf{DD}} \, \mathbf{I}_{\mathsf{peak}} \, \mathbf{f}_{0 \to 1} + \mathbf{V}_{\mathsf{DD}} \, \mathbf{I}_{\mathsf{leakage}}$ Short-circuit Leakage power Dynamic power (~90% today and (~2% today and power decreasing (~8% today and increasing) relatively) decreasing

absolutely)

© John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

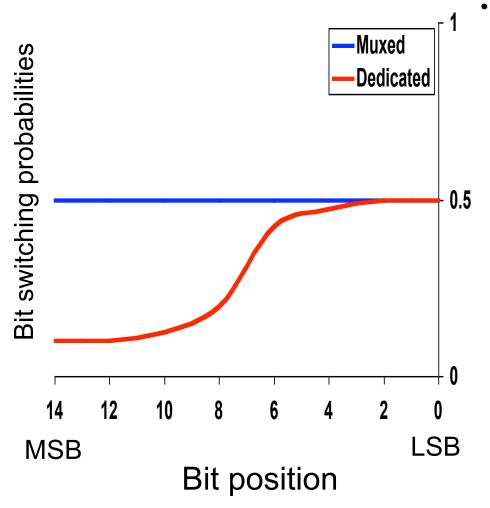
ECE 249 VLSI Design and Simulation Spring 2005 Lecture 20


Power and Energy Design Space

	Constant Throughput/Latency		Variable Throughput/Latency	
Energy	Design Time	Non-active Modules		Run Time
Active	Logic Design Reduced V _{dd} Sizing	Clock Gating Sleep Transistors		DFS, DVS (Dynamic Freq, Voltage Scaling)
	Multi-V _{dd}			- Coamigy
Leakage	+ Multi-V _T	Multi- Variab		+ Variable V_T

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 20

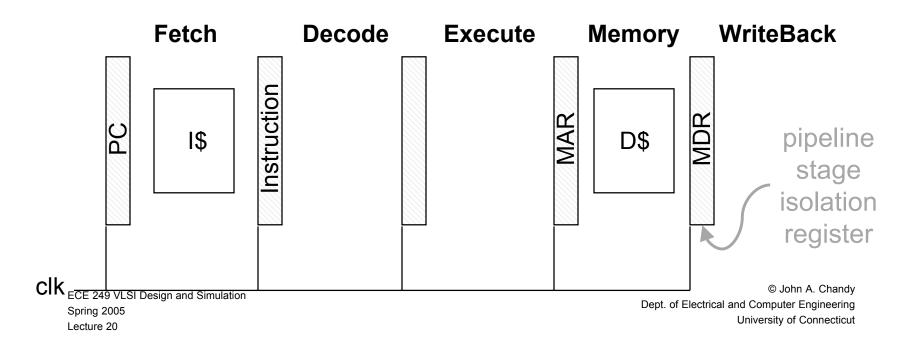
Bus Multiplexing


- Buses are a significant source of power dissipation due to high switching activities and large capacitive loading
 - 15% of total power in Alpha 21064
 - 30% of total power in Intel 80386
- Share long data buses with time multiplexing (S₁ uses even cycles, S₂ odd)

• But what if data samples are correlated (e.g., sign bits)?

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 20

Correlated Data Streams

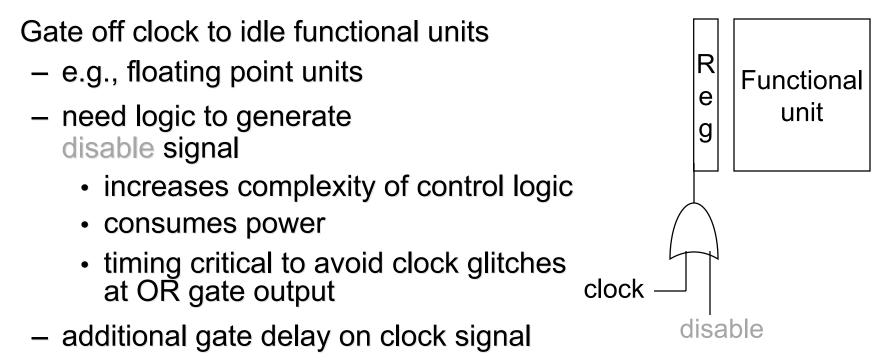


- For a shared (multiplexed) bus advantages of data correlation are lost (bus carries samples from two uncorrelated data streams)
 - Bus sharing should not be used for positively correlated data streams
 - Bus sharing may prove advantageous in a negatively correlated data stream (where successive samples switch sign bits) more random switching

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 20

Glitch Reduction by Pipelining

- Glitches depend on the logic depth of the circuit gates deeper in the logic network are more prone to glitching
 - arrival times of the gate inputs are more spread due to delay imbalances
 - usually affected more by primary input switching
- Reduce logic depth by adding pipeline registers
 - additional energy used by the clock and pipeline registers

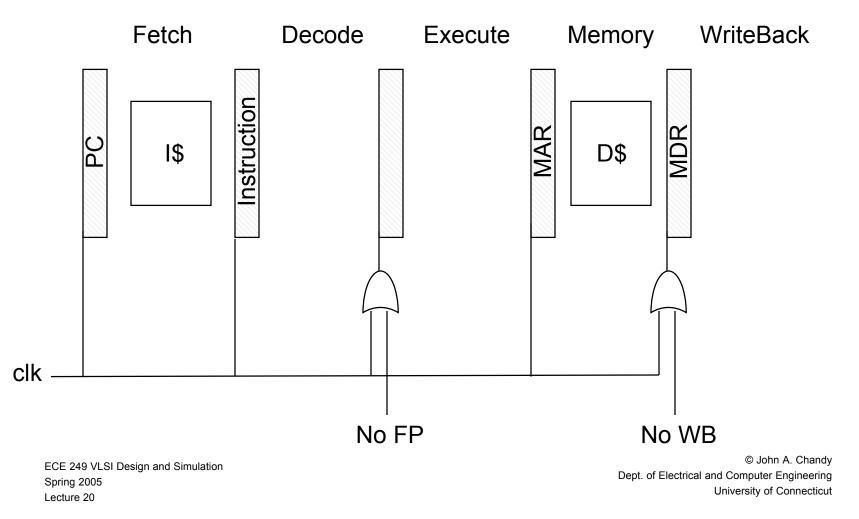

Power and Energy Design Space

	Constant Throughput/Latency		Variable Throughput/Latency	
Energy	Design Time	Non-active Modules		Run Time
	Logic Design	Clock Gating		DFS, DVS (Dynamic
Active	Reduced V_{dd}			
	Sizing			Freq, Voltage
	Multi-V _{dd}			Scaling)
		Sleep Transistors Multi-V _{dd} Variable V _T		+ Variable V_{T}
Leakage	+ Multi-V _⊤			

Clock Gating

٠

 Most popular method for power reduction of clock signals and functional units

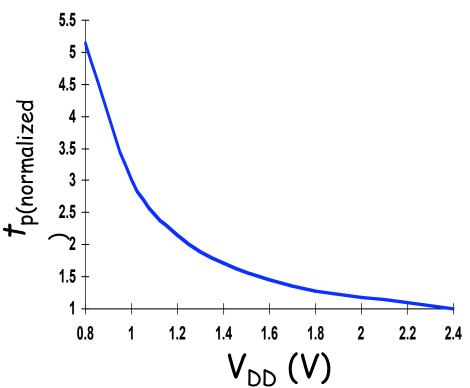


 gating OR gate can replace a buffer in the clock distribution tree

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 20

Clock Gating in a Pipelined Datapath

• For idle units (e.g., floating point units in Exec stage, WB stage for instructions with no write back operation)



Power and Energy Design Space

	Constant Throughput/Latency		Variable Throughput/Latency	
Energy	Design Time	Non-active Modules		Run Time
	Logic Design	Clock Gating		DFS, DVS
Active	Reduced V_{dd}			(Dynamic
	Sizing			Freq, Voltage
	Multi-V _{dd}			Scaling)
		Sleep Transistors		
Leakage	+ Multi-V _⊤	Multi	-V _{dd}	+ Variable V_T
		Variable V_T		

Review: Dynamic Power as a Function of V_{DD}

- Decreasing the V_{DD} decreases dynamic energy consumption (quadratically)
- But, increases gate delay (decreases performance)

 Determine the critical path(s) at design time and use high V_{DD} for the transistors on those paths for speed. Use a lower V_{DD} on the other logic to reduce dynamic energy consumption.

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 20

Dynamic Frequency and Voltage Scaling

- Intel's SpeedStep
 - Hardware that steps down the clock frequency (dynamic frequency scaling – DFS) when the user unplugs from AC power
 - PLL from 650MHz \rightarrow 500MHz
 - CPU stalls during SpeedStep adjustment

Dynamic Frequency and Voltage Scaling

- Transmeta LongRun
 - Hardware that applies both DFS and DVS (dynamic supply voltage scaling)
 - 32 levels of V_{DD} from 1.1V to 1.6V
 - PLL from 200MHz \rightarrow 700MHz in increments of 33MHz
 - Triggered when CPU load change is detected by software
 - heavier load \rightarrow ramp up V_{DD}, when stable speed up clock
 - lighter load \rightarrow slow down clock, when PLL locks onto new rate, ramp down V_{DD}
 - CPU stalls only during PLL relock (< 20 microsec)

Dynamic Thermal Management (DTM)

Trigger Mechanism: When do we enable DTM techniques? Initiation Mechanism: How do we enable technique?

Response Mechanism:

What technique do we enable?

© John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

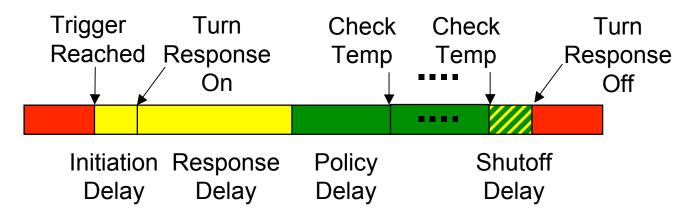
ECE 249 VLSI Design and Simulation Spring 2005 Lecture 20

DTM Trigger Mechanisms

- Mechanism: How to deduce temperature?
- Direct approach: on-chip temperature sensors
 - Based on differential voltage change across 2 diodes of different sizes
 - May require >1 sensor
 - Hysteresis and delay are problems

- Policy: When to begin responding?
 - Trigger level set too high means higher packaging costs
 - Trigger level set too low means frequent triggering and loss in performance
- Choose trigger level to exploit difference between average and worst case power_{© John A. Chandy}

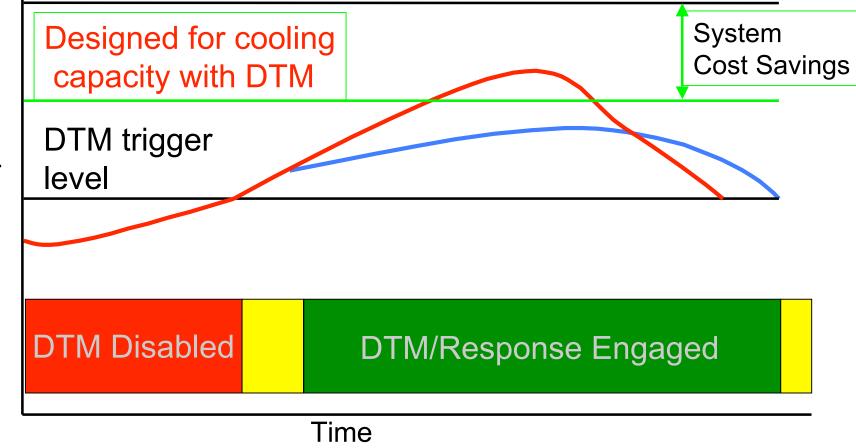
Dept. of Electrical and Computer Engineering


University of Connecticut

DTM Initiation and Response Mechanisms

- Operating system or microarchitectural control?
 - Hardware support can reduce performance penalty by 20-30%
- Initiation of policy incurs some delay
 - When using DVS and/or DFS, much of the performance penalty can be attributed to enabling/disabling overhead
 - Increasing policy delay reduces overhead; smarter initiation techniques would help as well
- Thermal window (100Kcycles+)
 - Larger thermal windows "smooth" short thermal spikes

DTM Activation and Deactivation Cycle



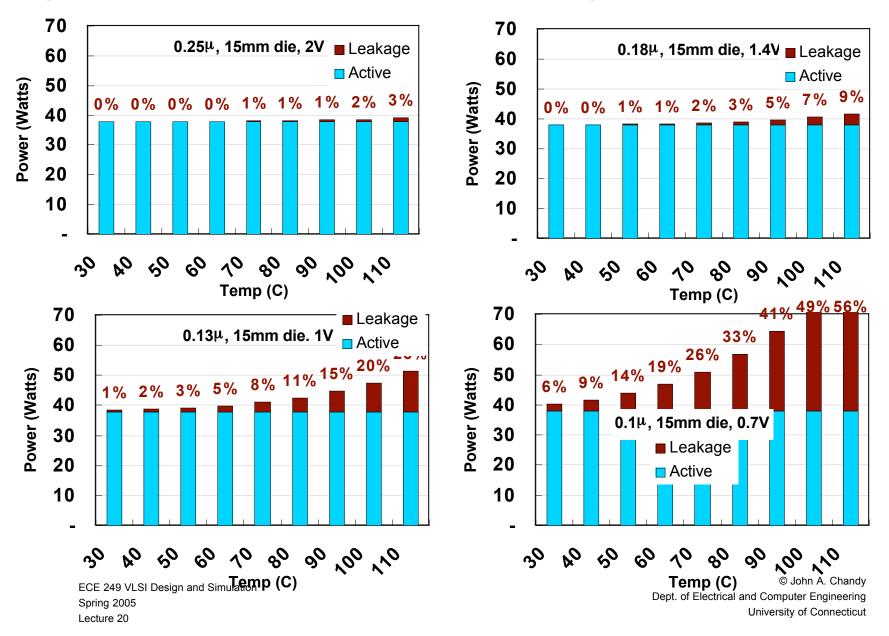
- □ Initiation Delay OS interrupt/handler
- Response Delay Invocation time (e.g., adjust clock)
- Policy Delay Number of cycles engaged
- Shutoff Delay Disabling time (e.g., re-adjust clock)

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 20

DTM Savings Benefits

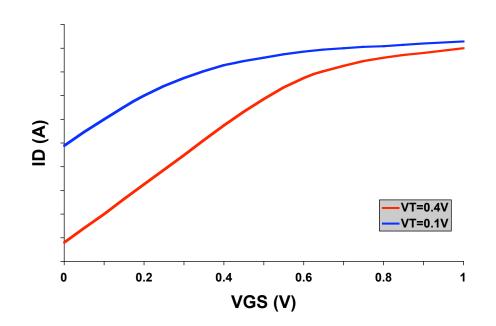
Designed for cooling capacity without DTM

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 20 © John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut


Temperature

Power and Energy Design Space

	Constant Throughput/Latency		Variable Throughput/Latency	
Energy	Design Time	Non-active Modules		Run Time
	Logic Design	Clock Gating		DFS, DVS
Active	Reduced V_{dd}			(Dynamic
	Sizing			Freq, Voltage
	Multi-V _{dd}			Scaling)
		Sleep Tra	Insistors	
Leakage	+ Multi-V _T	Multi-V _{dd}		+ Variable V_T
		Variab	le V _T	


ECE 249 VLSI Design and Simulation Spring 2005 Lecture 20

Speculated Power of a 15mm μ P

Review: Leakage as a Function of Design Time V_{T}

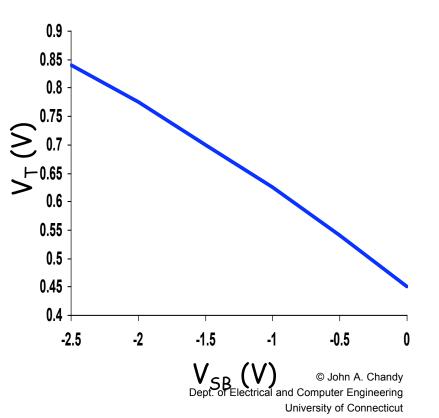
- Reducing the V_T increases the subthreshold leakage current (exponentially)
- But, reducing V_T decreases gate delay (increases performance)

Determine the critical path(s) at design time and use low V_T devices on the transistors on those paths for speed.
Use a high V_T on the other logic for leakage control.

Review: Variable V_T (ABB) at Run Time

 $V_T = V_{T0} + \gamma \left(\sqrt{\left| -2\phi_F + V_{SB} \right|} - \sqrt{\left| -2\phi_F \right|} \right)$

where V_{T0} is the threshold voltage at V_{SB} = 0


 V_{SB} is the source-bulk (substrate) voltage

 γ is the body-effect coefficient

For an n-channel device,
the substrate is normally tied
to ground

 □ A negative bias causes V_T to increase from 0.45V to 0.85V

Adjusting the substrate bias at run time is called adaptive body-biasing (ABB)

ECE 249 VLSI Design and Simulation Spring 2005 Lecture 20

Next class

- Testing and Verification
- Exam April 12th
- No lab tomorrow
 - Work on final project