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1 Filters

1.1 Standard Filters

These are the standard filter types from DSP class.

IIR (infinite-length impulse response) filter

y[n] =
M−1∑
k=0

b∗kx[n− k]−
N−1∑
k=1

a∗ky[n− k] (1)

H(z) =

∑M−1
k=0 b∗kz

−k

1 +
∑N−1
k=1 a

∗
kz

−k
(2)

FIR (finite-length impulse response) filter.

y[n] =
M−1∑
k=0

b∗kx[n− k] (3)

H(z) =
M−1∑
k=0

b∗kz
−k (4)

Several things are worth mentioning.

• Please note the convention of the complex conjugate on the filter co-
efficients. We will (usually) work with complex arithmetic, and this
turns out to be a convenient representation mostly in terms of the
Hermitian transpose.

• A primary concern with IIR filters is stability. Adaptive filters change
their coefficients, so one needs to be assured that no change will move
the filter to an unstable configuration. In some constrained cases (such
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as the adaptive notch filter1) this can be done, but in general it is too
difficult. Hence almost all adaptive filters are FIR, and we will deal
with them exclusively.

• These filters are for temporal signal processing, where causality is a
concern. Noncausal signal processing (“smoothing”) is of course a
possibility, as is multidimensional signal processing.

An FIR filter can he written as

y[n] = wHxn (5)

where
xn ≡ (x[n] x[n− 1] x[n− 2] . . . x[n−M + 1])T (6)

represents the input in “shift register” format as a column vector and

w ≡ (w0 w1 w2 . . . wM−1)
T (7)

is a column vector containing the filter coefficients. It is common to use w
for these in the optimal signal processing context as opposed to b as would
be expected from standard DSP (4).

1.2 Adaptation

Filters adapt by small movements that we will investigate soon. That is, we
have

y[n] = wH
n xn (8)

where wn is the filter coefficient vector at time n and

wn = wn−1 + µ(∆w)n (9)

The step size (presumably small) is µ and the direction (∆w)n is a vector
that is a function of input, previous output and some “desired” signal d[n]
that y[n] is being adaptive to match.

Some canonical structures are

System Identification. The adaptive filter tries to match the structure of
some unknown plant. it is assumed the input to the plant is available
and d[n] here is the plant’s output.

1An ANF has transfer function H(z) = 1−2bz−1+z−2

1−2αbz−1+α2z−2 where the b is adapted to
control the notch frequency and α is slightly less than unity.
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System Inversion. The adaptive filter is placed in series with an unknown
plant, and tries to match the input of that plant. The desired signal
d[n] here is the input delayed by some suitable number of samples to
make the inversion feasible.

Prediction. The desired signal d[n] here is the input signal delayed by
some samples, and the goal is to represent the structure of the random
process x[n].

Interference Cancelation. The system tries to match whatever is “match-
able” in a signal, for example in adaptive noise cancelation.

The last is rather vague, so consider the example

d[n] = s[n] + v1[n] (10)

x[n] = s[n] + v2[n] (11)

It is clear that based on {x[n]} at least some part (i.e. s[n]) of d[n] can be
matched. The noises vi[n] remain.

2 Correlation

2.1 Definitions and Properties

This will be very important. We’ll assume wide-sense stationarity (wss) for
analysis and design and that unless otherwise stated means of zero. We
define

r[m] ≡ E{x[n]x∗[n−m]} (12)

where the convention is important, and we might refer to this as rxx[m] if
there is confusion. It is easy to see that

r[−m] = r∗[m] (13)

As for cross-correlation we define

rxy[m] ≡ E{x[n]y∗[n−m]} (14)

for two random signals x[n] & y[n]. In matrix form we have

R ≡ E{xnxHn−m} (15)

and it is important to stress that R can be so defined whether xn represents
a “vectorized” scalar time process as in (6) or whether it is a vector time
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process2. Cross-correlation matrices are be defined similarly; we will define
cross-correlation vectors shortly. Note that the (i, j)th element of R is

R(i, j) = E{xn(i)x∗
n(j)} (16)

which is probably obvious, but in the case of a vectorized wss we have
R(i, j) = E{x[n+ 1− i]x∗[n+ 1− j]}.

Here are some properties of the correlation matrix. When the proof is
obvious it is suppressed.

• It is Hermitian: RH = R.

• If x[n] represents a “vectorized” scalar time process as in (6), then the
correlation matrix has a special form

R =


r[0] r[1] r[2] r[3] . . . r[M − 1]
r[−1] r[0] r[1] r[2] . . . r[M − 2]
r[−2] r[−1] r[0] r[1] . . . r[M − 3]

...
...

...
...

. . .
...

r[−(M − 1)] r[−(M − 2)] r[−(M − 3)] r[−(M − 4)] . . . r[0]


(17)

which is called “Toeplitz.” A Toeplitz matrix has constant elements
along all super- and sub-diagonals.

• It is non-negative definite.

wHRw = E{wHxnx
H
n w} = E{|y[n]|2} ≥ 0 (18)

• Define the “backwards” vector

xBn ≡ (x[n−M + 1] x[n−M + 2] x[n−M + 3] . . . x[n])T (19)

Then
RB ≡ E{xBn (xBn−m)∗} = R∗ = RT (20)

Please note that the text is for some reason fond of referring to the random
process under study as u[n], which I think is a little confusing in light of
more typical the unit step nomenclature.

2An example of a vector time process is that the ith element of xn is the measurement
from the ith microphone in an array at time n.
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2.2 Autoregressive Models

Although we will soon see them again in the context of optimization, we
have enough ammunition now to understand them in terms of models. An
autoregressive (AR) model is a special case of (2) with unity numerator;
that is,

y[n] = x[n]−
N−1∑
k=1

a∗ky[n− k] (21)

y[n] = x[n]− aHyn−1 (22)

H(z) =
σ2x

1 +
∑N−1
k=1 a

∗
kz

−k
(23)

where the input x[n] is assumed to be white (and usually but not necessarily
Gaussian) with power σ2x. Define

r ≡ E{yn−1y[n]∗} (24)

= (r[−1] r[−2] . . . r[−M ])T (25)

= (r[1] r[2] . . . r[M ])H (26)

Then from (23) we can write

r = E{yn−1y[n]∗} (27)

= E{yn−1(x[n]− aHyn−1])
∗} (28)

= −Ra (29)

in which the only subtlety is that yn−1 and x[n] be independent – the latter
is a “future” input to the AR filter. Repeating the last, we have

Ra = −r (30)

in which (30) represents the celebrated “Yule-Walker” equations. Note that
since all quantities can be estimated from the data {y[n]} (30) provides a
way to estimate an AR process from its realization3.

3 Eigenstuff

3.1 Basic Material

For a general M ×M (square) matrix A the equation

Aq = λq (31)

3The power σ2
x needs to be computed separately. We will address this later.
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has M solutions in λ, although these may be complex. This is easy to see
as (31) implies that the determinant of (A − λI), which is an M th-order
polynomial in λ and hence has M roots, is zero. It is also easy to re-write
all solutions of (31) as

AQ = QΛ (32)

A = QΛQ−1 (33)

in which

Q ≡

 ↑ ↑ . . . ↑

q1 q2
. . . qM

↓ ↓ . . . ↓

 Λ ≡


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λM

 (34)

are the eigenvectors arranged into a column and a diagonal matrix of eigen-
values. We have not shown that Q−1 in general exists for (33), but that is
not in scope for this course. By convention eigenvectors are scaled to have
unit length.

3.2 Hermitian Matrices

Our matrices will usually be correlation matrices, and these are Hermitian.
We have the following:

Eigenvalues are non-negative and real.

0 ≤ qHi Rqi = qHi (λiqi) = λi|qi|2 (35)

Eigenvectors are orthonormal.

qHi Rqj = qHi Rqj (36)

qHi (λjqj) = (qiλi)
Hqj (37)

λiq
H
i qj = λjq

H
i qj (38)

For this to be true either λi = λj or qHi qj = 0. For distinct eigenvalues
the latter must be true. For N ≤ M repeated eigenvalues there is
a subspace of dimension N (orthogonal to all the eigenvectors with
different eigenvalues) that is an eigen-space: any vector within it has
the eigen-property (31). By convention we take an orthonormal basis
of that eigen-space as the eigenvectors; it doesn’t matter much which
such basis.
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Diagonalization. The analog to (33) is

R = QΛQH (39)

since Q−1 = QH – see previous property of orthonormality. Actually

R =
M∑
i=1

λiq
H
i qi (40)

is a rather nice way of expressing the same thing.

Matrix trace is sum of eigenvalues and determinant is product. This
comes from (39), but actually applies to any matrix A.

3.3 Relation to Power Spectrum

It’s perhaps not obvious, but there is only one non-trivial situation where the
eigenstuff and DFT have a strong relationship. This is when the correlation
is “circulant” for a Toeplitz matrix, meaning

r[m] = r[M +m] (41)

In the case that the process is real, this means r[m] = r[M −m] as well: the
top row of the Toeplitz matrix is symmetric around its midpoint. Consider

qp =
(
1 ej2pπ/M ej4pπ/M ej6pπ/M . . . ej(M−1)p2π/M

)H
(42)

Then the (m+ 1)st element of the product Rqp is

(Rqp)(m+ 1) =
M−1∑
k=0

r(k −m)e−jkp2π/M (43)

=
m−1∑
k=0

r(k −m)e−jkp2π/M

+
M−1∑
k=m

r(k −m)e−jkp2π/M (44)

=
m−1∑
k=0

r(M + k −m)e−jkp2π/M

+
M−1∑
k=m

r(k −m)e−jkp2π/M (45)
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=
M−1∑

k=M−m
r(k)e−j(k+m−M)p2π/M

+
M−m−1∑
k=0

r(k)e−j(k+m)p2π/M (46)

= e−jmp2π/M
M−1∑

k=M−m
r(k)e−jkp2π/M

+
M−m−1∑
k=0

r(k)e−jkp2π/M (47)

= e−jmp2π/M
(
M−1∑
k=0

r(k)e−jkp2π/M
)

(48)

= S(p)e−jmp2π/M (49)

which implies that the qp, which is the pth DFT vector, is an eigenvector with
eigenvalue the pth element of the power spectrum. One could go backwards
from (39) and show that the circulant condition must be true if the DFT
relationship holds.

But the DFT and frequency analysis have a fairly strong relationship to
Toeplitz covariance matrices, as we shall see. One example is this:

λi = qHi Rqi (50)

=
M∑
k=1

M∑
l=1

qi(k)∗qi(l)r[k − l] (51)

=
M∑
k=1

M∑
l=1

qi(k)∗qi(l)
1

2π

∫ π

−π
S(ω)ejω(k−l)dω (52)

=
1

2π

∫ π

−π
S(ω)|Qi(ω)|2dω (53)

where

Qi(ω) ≡
M−1∑
k=0

qi(k + 1)e−jωk (54)

is the DFT of the eigenvector. Now since

1

2π

∫ π

−π
|Qi(ω)|2dω =

M∑
k=1

|qi(k)|2 (55)

by Parseval and since this is unity, (53) tells us that

min
ω
{S(ω)} ≤ λi ≤ max

ω
{S(ω)} (56)
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which is nicer looking than it is useful, unfortunately.
At this point it is probably worth looking at a particular case, that of a

sinusoid in noise. Suppose

x[n] = aejωn + ν[n] (57)

where a and {ν[n]} are complex Gaussian, respectively a random variable
with variance σ2a and a white noise process with power σ2ν . Then with

γω ≡ (1 ejω ej2ω . . . ej(M−1)ω)T (58)

we have
R = σ2aγ(ω)γ(ω)H + σ2νI (59)

The eigenstuff is dominated by one eigenvalue equal to Mσ2a + σ2ν with
eigenvector proportional to γ(ω). The other eigenvectors are orthogonal to
γ(ω) (of course!) and have common eigenvalue σ2ν .
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