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1 Sparse Representations

Why do image processors transform an image – via multi-resolution (wavelet)
transform, discrete Fourier transform (2D-DFT) or its variant the discrete
cosine transform (DCT) – prior to coding it for data compaction? It seems
fairly intuitive: while in the original (image) domain the energy is distributed
evenly amongst all pixels, in the transform domain this is no longer true. For
example, it is common to find most of the energy in low spatial frequency
components (larger image objects) and much less at higher frequencies (fine
detail); and it makes sense to expend many bits to quantize the former and
rather fewer to deal with the latter. In fact, inverse water-filling from rate-
distortion arguments in information theory tell us to do exactly that, and
even to ignore completely (no bits at all) components that are smaller than
some threshold.

Taken to its limit, this describes a representation that is sparse. We may
wish to write

x = As + e (1)

in which x is the observation vector1 of dimension M × 1, A is an a-priori
fixed “dictionary” matrix2 of dimension M × N (generally M � N), s
is a vector of dimension N × 1 that contains only S (S � M) non-zero
elements and e is a small “noise” vector to account for the inaccuracy in
the representation. This is clearly quite appealing: to code (approximately,
anyway) the data vector x all we need is a few (S) elements of s, since
presumably the de-coder already knows A.

1This is not quite a correct thing to write in all cases, but wait for Compressive Sensing
to go into more detail.

2This is an over-complete dictionary: there are more columns of A than should be nec-
essary to span the space, meaning that these columns are necessarily linearly dependent.
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So how do we do this? Let’s begin by considering the problem

min
s
{‖s‖2} such that ‖x−As‖2 ≤ ε (2)

in which ‖·‖2 refers to the Euclidean distance (2-norm). With a few Lagrange
multipliers and use of the Woodbury formula we have

s = (ATA + λI)−1ATx (3)

where ∥∥(I + λ−1AAT )−1x
∥∥
2

= ε (4)

solves implicitly for λ. This is complicated and not what we want anyway –
the point in showing it is to demonstrate that there will be no special sparsity
associated with the problem, since s will in general be fully populated. A
real sparse solution is found from

min
s
{‖s‖0} such that ‖x−As‖2 ≤ ε (5)

where the 0-norm is the number of non-zero elements. The problem with this
solution is that in general one may need to test each of the 2N combinations
of non-zero elements of s, and that is clearly not an option for computational
reasons. Actually you can do OK with a greedy algorithm, that amounts
to finding the best column of A, then next-best, and so on: this is called
matching-pursuit (MP) and has complexity O(MS). A variant of MP that
works a little better is orthogonal matching pursuit (OMP): after a new
column of A is discovered all non-zero coefficients in the set so far discovered
are re-computed. This reduces the error somewhat, and the complexity
remains approximately the same.

However, researchers have found that an in-between solution is perhaps
preferable. Consider the problem

min
s

{
‖s‖p

}
such that x = As (6)

where of course

‖s‖p =

(
M∑

m=1

|s[m]|p
) 1

p

(7)

This assumes that an exact solution (not necessarily sparse) exists, but the
notion suggests the following cartoon.
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On the left is what we have with p = 2 – minimizing the standard Eu-
clidean norm does not encourage a sparse solution. On the right is the L1

(“Manhattan distance”) norm, and it is seen that a sparse solution is indeed
the most likely result, since it will be at a “corner” of the constraint set.
Actually a reformulation of (6) is what is actually posed:

min
s

{
‖x−As‖22

}
such that ‖s‖1 ≤ ε (8)

where

‖s‖1 =

M∑
m=1

|s[m]| (9)

Problem (8) is solved iteratively by a classical subgradient technique from
statistics, and is called Least Absolute Shrinkage and Selection Operator
(LASSO). And there seems to be some success with (6) using p = 0.5.

2 Compressive Sensing

Consider a communications application in which the channel is being probed.
The channel is made up of multiple paths, such that

h[n] =

K∑
k=1

αkδ[n− nk] (10)

and it is assumed here that the sampling rate is high enough that Nyquist
rate sampling can incorporate all possible delays – hence we use discrete
time to represent it. Naturally, you want to characterize the channel. One
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approach is simply to measure h[n] – perhaps by inserting a very narrow
pulse – and to look for peaks. One may need a lot of samples.

Another approach would be to apply a sinusoid of frequency ω1; one
observes

H(ω1) =

K∑
k=1

αke
−jω1tk (11)

If one applies another sinusoid of frequency ω2 one observes H(ω2); and so
on. Notice that all paths {αk, tk} contribute to all observations; and that
one really needs only L ≥ K probing frequencies in order to have enough
information to characterize the channel. Notice that we can write

L frequencies




H(ω1)
H(ω2)

...
H(ωL)

 =


e−jω10 e−jω1 e−jω12 . . . e−jω1(N−1)

e−jω20 e−jω2 e−jω22 . . . e−jω2(N−1)

...
...

...
. . .

...

e−jωL0 e−jωL e−jωL2 . . . e−jωL(N−1)


︸ ︷︷ ︸

N samples = N possible paths



0
...
0
α1

0
...
0
α2

0
...



(12)

where the vector on the RHS is clearly sparse: we could write (12) as (1) with
e = 0 and the nth column of the dictionary matrix containing the response
of a path at time sample n to the various probing frequencies. Notice how
many fewer samples (channel-probings) are needed.

At a somewhat more abstract level what we have done is to posit that
we have

x = As (13)

with a sparse s, but that in fact we observe

y = Bx (14)

meaning that we have
y = Cs (15)
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where
C = BA (16)

In the channel-probing example just given, x is the impulse response, which
we do not know but would like to know. The sparse vector s is made up
of mostly 0’s but also the α’s in the appropriate locations. These locations
are delayed impulses, meaning that the ith column of A is really just an
impulse at the ith delay – that is, it is δ[n − ni], where n increments down
the column. We do not observe x directly, of course; instead we observe Bx
which is the response of the impulse response at a particular frequency (see
(12)). We observe this at several frequencies; that is, we observe y which is
made up of H(ω)’s.

B

x

=yL

M

= B

M A

N

s
= C

s

The notional figure is as above. The figure assumes that N � M but this
need not be true and we could have N quite large – in that case the matrix
C would be “fat.”

The above figure leads us to the rather interesting idea of the “single-
pixel” camera. In the digital communications notional example the columns
of C – the dictionary that we are trying to build our response from – is
constructed carefully. That is, each column corresponds to the response
that we would observe at the frequencies probed for a specific delay. But
indeed much of the more recent success of such compressive sensing has come
via columns that are designed haphazardly – using Matlab’s randnormal
function, for example.

Suppose that each row of B represents a pseudo-random photographic
mask, and the corresponding element in the observation vector y is the
amount of light received at the single pixel (a photo-diode?) as the true
image x is applied to the mask. The matrix A can be anything, and often is
assumed itself to be random. The after solving the sparse problem y = Cs
the resultant vector s is applied to the dictionary matrix A to render an
approximation to the actual image x. It seems to work quite well.

5



Please see the figure below, taken from “Compressive Sensing” by R.
Baraniuk, IEEE Signal Processing Magazine, pp. 118-124, July 2007.

[lecture NOTES] continued

can exactly recover K-sparse signals and
closely approximate compressible signals
with high probability using only
M ≥ cK log(N/K) iid Gaussian meas-
urements [1], [2]. This is a convex opti-
mization problem that conveniently
reduces to a linear program known as
basis pursuit [1], [2] whose computation-
al complexity is about O(N3). Other,
related reconstruction algorithms are
proposed in [6] and [7].

DISCUSSION
The geometry of the compressive sensing
problem in RN helps visualize why ℓ2
reconstruction fails to find the sparse
solution that can be identified by ℓ1
reconstruction. The set of all K-sparse
vectors s in RN is a highly nonlinear
space consisting of all K-dimensional
hyperplanes that are aligned with the
coordinate axes as shown in Figure 2(a).
The translated null space H = N (") + s
is oriented at a random angle due to the
randomness in the matrix " as shown in
Figure 2(b). (In practice N, M, K ≫ 3, so
any intuition based on three dimensions
may be misleading.) The ℓ2 minimizer ̂s
from (4) is the point on H closest to the
origin. This point can be found by blow-
ing up a hypersphere (the ℓ2 ball) until it
contacts H. Due to the random orienta-
tion of H, the closest point ̂s will live
away from the coordinate axes with high
probability and hence will be neither
sparse nor close to the correct answer s.
In contrast, the ℓ1 ball in Figure 2(c) has
points aligned with the coordinate axes.
Therefore, when the ℓ1 ball is blown up,
it will first contact the translated null
space H at a point near the coordinate
axes, which is precisely where the sparse
vector s is located.

While the focus here has been on dis-
crete-time signals x, compressive sensing
also applies to sparse or compressible
analog signals x(t) that can be represent-
ed or approximated using only K out of
N possible elements from a continuous
basis or dictionary {ψi(t)}N

i =1 . While
each ψi(t) may have large bandwidth
(and thus a high Nyquist rate), the signal
x(t) has only K degrees of freedom and
thus can be measured at a much lower
rate [8], [9].

PRACTICAL EXAMPLE
As a practical example, consider a sin-
gle-pixel, compressive digital camera
that directly acquires M random linear
measurements without first collecting
the N pixel values [10]. As illustrated in
Figure 3(a), the incident light-field cor-
responding to the desired image x is
reflected off a digital micromirror device
(DMD) consisting of an array of N tiny
mirrors. (DMDs are present in many
computer projectors and projection tele-
visions.) The reflected light is then col-
lected by a second lens and focused onto
a single photodiode (the single pixel).

Each mirror can be independently ori-
ented either towards the photodiode
(corresponding to a 1) or away from the
photodiode (corresponding to a 0). To
collect measurements, a random number
generator (RNG) sets the mirror orienta-
tions in a pseudorandom 1/0 pattern to
create the measurement vector φ j. The
voltage at the photodiode then equals yj,
which is the inner product between φ j
and the desired image x. The process is
repeated M times to obtain all of the
entries in y.

[FIG2] (a) The subspaces containing two sparse vectors in R3 lie close to the
coordinate axes. (b) Visualization of the ℓ2 minimization (5) that finds the non-
sparse point-of-contact ̂s between the ℓ2 ball (hypersphere, in red) and the
translated measurement matrix null space (in green). (c) Visualization of the ℓ1
minimization solution that finds the sparse point-of-contact ̂s with high probability
thanks to the pointiness of the ℓ1 ball.
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[FIG3] (a) Single-pixel, compressive sensing camera. (b) Conventional digital camera
image of a soccer ball. (c) 64 × 64 black-and-white image ̂x of the same ball (N = 4,096
pixels) recovered from M = 1,600 random measurements taken by the camera in (a).
The images in (b) and (c) are not meant to be aligned.
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(continued on page 124)

IEEE SIGNAL PROCESSING MAGAZINE [120] JULY 2007

In order that this work we need to make sure that we have the correct
sparse vector s of sparseness S. Suppose that we have y = Cs1 and y = Cs2
for d = (s1− s2) 6= 0. Then we know that Cd = 0 which implies that there
is some group of 2S columns of C that are linearly dependent. To avoid
this, we must insist that all such collections of 2S columns of C be linearly-
independent. This amounts to the (more complicated) restricted isometry
property (RIP) that gives fairly exact results.
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