
ECE 6123
Advanced Signal Processing:

EM, HMMs and BP

Peter Willett

Fall 2017

1 Expectation-Maximization (EM)

1.1 The Algorithm and Why it Works

Suppose we have a problem in which the variables can be divided as follows:

Z: The observation – known, of course.

X: The unknown parameters that are desired.

K: Some hidden random variables.

In fact we could have X as an unknown random variable (i.e., with a prior)
but for the present discussion let’s assume it is a parameter. Our goal is to
find the maximum-likelihood estimator (MLE) of X based on Z. Now, if you
can easily write pX(Z) by all means maximize it and skip this whole section.
What we are interested in are cases in which pX(Z|K) and pX(K) can both
be written, but (with integration in the most general sense, possibly meaning
a sum)

pX(Z) =

∫
pX(Z|K)pX(K)dK (1)

is irritating and complicated to evaluate, let alone maximize.
The EM approach has two steps. We begin with some sort of guess –

and, yes, it can matter a lot – as to X0, and set n = 0.

E-step: Here we form the “Q-function”

Q(X;X(n)) ≡
∫

log (pX(Z,K)) pX(n)(K|Z)dK (2)

and the reason this is called the E-step should be obvious: it involves
an expectation, albeit of an unexpected function.

1

M-step: We maximize (yes, that’s why it’s called the M-step) and form

X(n+1) = arg max
X

{
Q(X;X(n))

}
(3)

We then increment n and return to the E-step.

The reason this works is actually pretty simple. We have

Q(X;X(n)) =

∫
log (pX(Z,K)) pX(n)(K|Z)dK (4)

=

∫
(log (pX(K|Z)) + log (pX(Z))) pX(n)(K|Z)dK (5)

= log (pX(Z)) +

∫
log (pX(K|Z)) pX(n)(K|Z)dK (6)

Now consider any two pmf’s or pdf’s q1 & q2. Noting that

ln(x) ≤ x− 1 (7)

with equality if and only if x = 1 (draw the graph!), we have∫
q1 log(q2) −

∫
q1 log(q1) =

∫
q1 log

(
q2
q1

)
(8)

≤ log(2)

∫
q1

(
q2
q1
− 1

)
(9)

≤ log(2)

∫
q1

(
q2
q1
− 1

)
(10)

= 0 (11)

This means that ∫
q1 log(q2) ≤

∫
q1 log(q1) (12)

with equality if and only if q1 = q2. Returning to (6) we see from (12) that
if

Q(X(n+1);X(n)) > Q(X(n);X(n)) (13)

then
log (pX(n+1)(Z)) > log (pX(n)(Z)) (14)

since the second term must have decreased. This means that the change
from X(n) to X(n+1) must have increased the likelihood that we are aiming
to maximize. Note that although the M-step by tradition requires a maxi-
mization, the M could also stand for majorization: all that is really required

2

for (14) is an increase in Q. There is no real need for a maximization if that
turns out to be difficult or expensive. Note also that (14) tells us clearly that
this is hill-climbing approach: there is no guarantee that a global maximum
likelihood be found.

As a final note, many authors refer to K
⋃
Z as the complete data and

Z as the incomplete data. I don’t care for the nomenclature; but there it is.

1.2 The Gaussian Mixture Example

Sometimes you need to manufacture the K’s yourself. Consider that you
have N independent zi’s from the same Gaussian mixture pdf

p(z) =
M∑
m=1

pm√
|2πR|

e−
1
2
(z−µm)TR−1(z−µm) (15)

where the mixture priors {pm} and the means {µm} are both unknown. You
could insert1 K = {ki} such that ki ∈ {1,M} and

Pr(ki = m) = pm (16)

{ki} ∼ independent and identically distributed (17)

p(zi|ki) =
1√
|2πR|

e−
1
2
(zi−µki)

TR−1(zi−µki) (18)

In the EM formalism the first thing we need is pX(n)(K|Z). This is relatively
easy:

pX(n)(K|Z) =
N∏
i=1

p(ki|Z) (19)

=

N∏
i=1

pX(n)(ki|zi) (20)

≡
N∏
i=1

wi(ki) (21)

wi(m) =
p
(n)
m pX(n)(zi|ki = m)∑M
l=1 p

(n)
l pX(n)(zi|ki = l)

(22)

=
p
(n)
m

1√
|2πR|

e−
1
2
(zi−µ

(n)
m)TR−1(zi−µ

(n)
m)

∑M
l=1 p

(n)
l

√
|2πR|e−

1
2
(zi−µ

(n)
l)TR−1(zi−µ

(n)
l)

(23)

1Actually this is the way you would generate such random variables.

3

The nomenclature involving w’s is fairly common for the posterior proba-
bilities. Now we have

Q(X;X(n)) =

∫
log (pX(Z,K)) pX(n)(K)dK (24)

=
∑
K

(
N∑
i=1

((
log(pki) −

1

2
log (|2πR|)

− 1

2
(zi − µki)

T R−1 (zi − µki)
) M∏
i=1

wi(ki)

))
(25)

=

M∑
m=1

N∑
i=1

((
log(pm) − 1

2
log (|2πR|)

− 1

2
(zi − µm)T R−1 (zi − µm)

)
wi(m)

)
(26)

Maximizing (26) over pm subject to the constraint that these prior proba-
bilities add to unity yields

∂

∂pm

(
N∑
i=1

log(pm)wi(m)− λpm

)
= 0 (27)

or

pm =

∑N
i=1wi(m)∑N

i=1

∑M
l=1wi(l)

(28)

where of course the denominator is most easily found by normalization. As
for the µm’s we take the gradient

∇

(
N∑
i=1

(
1

2
(zi − µm)T R−1 (zi − µm)

)
wi(m)

)
= 0 (29)

N∑
i=1

(
R−1 (zi − µm)

)
wi(m) = 0 (30)

or

µm =

∑N
i=1wi(m)zi∑N
i=1wi(m)

(31)

This is a nice easy recursion: Start with a guess about the µm’s and pm’s.
Then calculate the w’s according to (23). Then update the parameters
according to (28) & (31); and go back to getting new w’s. Stop when you
get tired of it – or more likely when the estimates stop moving. Note that

4

this is a “soft” version of the celebrated k-means algorithm for clustering.
It is also interesting to note that it is possible to estimate the covariance
as well, and also to allow the covariances to be different across the various
modes.

2 The Hidden Markov Model

2.1 Modeling for EM

A Markov model has

p(Z) = p(z1)

N∏
i=2

p(zi|zi−1) (32)

whereas a hidden Markov model (HMM) does not give direct access to the
Markov process:

p(Z,K) =

(
p(k1)

N∏
i=2

p(ki|ki−1)

)(
N∏
i=1

p(zi|ki)

)
(33)

A fragment of an HMM is pictured below.

ki-1 ki ki+1

zi-1 zi zi+1

I have gone out of my way to use non-standard HMM nomenclature (espe-
cially the ki’s) to emphasize the relationship to the EM algorithmic tools we
have developed. We will define X = {A,B,p} in which

A(m|n) = Pr(ki = m|ki−1 = n) (34)

B(l|n) = Pr(zi = l|ki = n) (35)

p(m) = Pr(k1 = m) (36)

These are what we seek: the M ×M matrix A and the M × L matrix B,
meaning that there are M “hidden” states and L kinds2 of outputs. And of

2There is a perfectly good formulation of the HMM that allows for continuous-valued
outputs; for simplicity of notation we will assume discreteness.

5

course this is a prime example of a problem that is absolutely panting for
EM to come solve it.

2.2 The Forward-Backward Algorithm

In this section we seek an expression for the posterior probabilities of the
state sequence. Define

α(Zi+1
1 ,m) ≡ p(Zi1, ki = m) (37)

We can write

α(Zi+1
1 ,m) =

M∑
n=1

p(zi+1, ki+1 = m, ki = n,Zi1) (38)

=
M∑
n=1

p(zi+1, ki+1 = m|ki = n,Zi1)

× Pr(ki = n,Zi1) (39)

=

M∑
n=1

p(zi+1|ki+1 = m,Zi1, ki = n)

× Pr(ki+1 = m|Zi1, ki = n)Pr(ki = n,Zi1) (40)

=
M∑
n=1

p(zi+1|ki+1 = m)

× Pr(ki+1 = m|ki = n)Pr(ki = n,Zi1) (41)

=

M∑
n=1

B(zi+1|m)A(m|n)α(Zi1, n) (42)

which is a nice recursive formula for α(·|·) when initialized with

α(Z1
1,m) = Pr(z1, ki = m) (43)

=
B(z1|m)p(m)∑M
l=1B(z1|l)p(l)

(44)

This is the forward part of the forward-backward algorithm. Notice that if
all we wanted was what amounted to a filter – that is, we want the posterior
probability p(ki = m|Zi1) – then all we need to do is one single “forward”
pass and normalize the sum over m of the α(ZN1 ,m)’s to be unity. Similarly,
If what we wanted was just p(Zi1) – that would give us the likelihood that
we might use to test if the model is correct – then all we need do is sum

6

α(ZN1 ,m) over m to marginalize that out. That is, in either of these cases
we would be done. However, in order to estimate the model we require
detailed information about pX(n)(K|Z); for that we need the backward pass.
However, similar to the Kalman Smoother3 all that is needed is one forward
and one backward sweep 4 per iteration.

Similarly, define

β(ZNi+1,m) ≡ p(ZNi+1|ki = m) (45)

We can write

β(ZNi ,m) = p(ZNi |ki−1 = m) (46)

=
M∑
n=1

p(ZNi+1, zi, ki = n|ki−1 = m) (47)

=
M∑
n=1

p(ZNi+1|zi, ki = n, ki−1 = m)

× p(zi|ki = n, ki−1 = m)

× Pr(ki = n|ki−1 = m) (48)

=

M∑
n=1

Pr(ZNi+1|ki = n)p(zi|ki = n)

× Pr(ki = n|ki−1 = m) (49)

=

M∑
n=1

β(ZNi+1, n)B(zi|n)A(n|m) (50)

which is a nice recursive formula for β(·|·) when initialized with

β(ZNN+1,m) =
1

N
(51)

This is the backward part of the forward-backward algorithm. It is typical to
scale both forward and backward directions, since underflow often results.

One key fact that is especially interesting is that these quantities give us

3Actually there is a nice alternative derivation of the Kalman Smoother that is exactly
Baum-Welch.

4In the EM (or Baum-Welch) algorithm the estimates for X(n) = {A,B,p} change
each iteration. Naturally, therefore, each iteration requires a new forward and backward
sweep to determine the requisite pX(n)(K|Z).

7

the marginal probabilities for state occupancies. That is,

Pr(ki = m|ZN1) ∝ p(ki = m,ZN1) (52)

= p(Zi1,Z
N
i+1, ki = m) (53)

= p(ZNi+1|Zi1, ki = m)p(Zi1|ki = m) (54)

= p(ZNi+1|ki = m)p(Zi1|ki = m) (55)

= β(ZNi+1|ki = m)α(Zi1|ki = m) (56)

and normalizing (56) to sum to unity is obvious. We also see from (52) that
we can write

p(ZN1) =
M∑
m=1

p(ki = m,ZN1) (57)

=
M∑
m=1

β(ZNi+1|ki = m)α(Zi1|ki = m) (58)

which, interestingly, does not depend5 on i. This is the likelihood of the
whole sequence given the model, and can be useful for model testing.

Now we’ll need

w1(m) ≡ PrX(n)(ki = m|Z) (59)

= β(ZN2 |ki = m)α(Z1
1|ki = m) (60)

from (56). We’ll also need

p(ki−1 = n, ki = m|ZN1) ∝ p(ki−1 = n, ki = m,ZN1) (61)

= p(Zi−11 , zi,Z
N
i+1, ki−1 = n, ki = m) (62)

= p(ZNi+1|Zi−11 , zi, ki−1 = n, ki = m)

× p(zi|Zi−11 , ki−1 = n, ki = m)

× p(ki = m|Zi−11 , ki−1 = n)

× p(Zi−11 , ki−1 = n) (63)

= p(ZNi+1|ki = m)p(zi|, ki = m)

× p(ki = m|ki−1 = n)

× p(Zi−11 , ki−1 = n) (64)

= β(ZNi+1|m)B(zi|m)A(m|n)α(Zi−11 , n) (65)

5In fact the solution is the same for every i.

8

Finally, we’ll need

p(ki = m, zi = n|ZN1) ∝ p(ki = m,ZN1)I(zi = n) (66)

= p(ZNi+1|ki = m)p(ki = m,Zi1)

× I(zi = n) (67)

= β(ZNi+1|m)α(Zi1,m)I(zi = n) (68)

And now we are ready to apply EM.

2.3 The Baum-Welch Algorithm

The Baum-Welch “re-estimation” algorithm was designed to estimate the
parameters of an HMM based on one or preferably many sets of observa-
tions. The notation below assumes a single time series observation, but
the extension to multiple observation sequences is obvious – and indeed es-
timation of the initial probability will be pretty poor if there is only one
times-series observation, since there is only one exemplar. Note that there
is no stipulation that the underlying Markov model be in “steady-state” –
Baum-Welch works fine for non-stationary HMMs. The Baum-Welch pro-
cedure was discovered independently of EM; but it was later noted that it
was exactly the EM algorithm applied to an HMM.

We begin by inserting (33) to (2). We have

Q(X;X(n)) =

∫
log (pX(Z,K)) pX(n)(K|Z)dK (69)

=
∑
K

((
log(p(k1)) +

N∑
i=2

log (A(ki|ki−1))

+

N∑
i=1

log (B(zi|ki))

)
pX(n)(K|Z)

)
(70)

Maximizing the Q-function over all these is quite simple; the only “subtlety”
(and it isn’t very subtle, really) is that we have to apply the Lagrange
constraint that all probabilities sum to unity. We get

p(m) = w1(m) (71)

using (60). We also have

A(m|n) = κA(·|n)

N∑
i=2

p(ki−1 = n, ki = m|ZN1) (72)

9

where the probabilities are from (65) and κA(·|n) is such that

M∑
m=1

A(m|n) = 1 (73)

is normalized. Finally, we get

B(l|m) = κB(·|m)

N∑
i=1

p(ki = m, zi = n|ZN1) (74)

where the probabilities are from (68) and κB(·|m) is such that

L∑
l=1

B(l|m) = 1 (75)

is normalized. Baum-Welch says keep doing this iteration until convergence.

10

