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1 Background on Hypothesis Testing

Let us begin with the principle of optimal decision-making. it is simple to
show that given a set of simple hypotheses Hi (i ∈ {1, 2, . . . , I}), the optimal
– in the sense of a minimization of the probability of error – decision is to
select

Hj = arg max
Hi
{p(u|Hi)Pr(Hi)} (1)

where u is the observed data and p(·) represents a probability density. A
simple hypothesis is one in which p(u|Hi) has meaning or can be written.
To see this, write

Ωi = {u such that u ∈ Ωi means decide Hi} (2)

Then

P (error) =
I∑
i=1

Pr(u /∈ Ωi|Hi)Pr(Hi) (3)

= 1 −
I∑
i=1

Pr(u ∈ Ωi|Hi)Pr(Hi) (4)

= 1 −
I∑
i=1

∫
Ωi

p(u|Hi)Pr(Hi)du (5)

= 1 −
∫ I∑

i=1

{I(decide Hi)p(u|Hi)Pr(Hi)} du (6)

which is clearly minimized by the rule (1). An example of a simple hypoth-
esis is Hi that {u[n]} is white and Gaussian with mean time series {µi[n]}.

A composite-hypothesis situation, on the other hand, is one in which we
have p(u|θ) and

Hi = {θ ∈ Θi} (7)
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for some exhaustive set of Θi’s. Note that if there exists any prior probability
measure on θ then this is actually a simple hypothesis test, since we can write

p(u|Hi) =

∫
p(u|θ)p(θ|Hi)dθ (8)

But otherwise the test is composite. The most common testing strategy for
composite testing is to use the generalized likelihood (GL)

max
θ∈Θi
{p(u|θ)} (9)

and in the case of only two hypotheses it would be simpler to express this
as a ratio: the GLR.

To be concrete, suppose you have been given a section of time series
{u[n]}N−1

n=0 . You are asked to fit an AR model to this. What order AR
model? If we maximize (9) the answer is: as large as we can make it. This
is because a second-order model is a special case of.a third-order model, and
hence the maximized likelihood under a third-order assumption can be no
smaller than that under a second-order assumption.

Notionally, there comes a point when increasing the order of the model
amounts to “fitting the noise” – it is not providing better explanation of the
data, it is just able to wiggle more to reduce the deviations. However, how
to deal with unknown model order is not at all straightforward; the reason
is that unless p(θ|Hi) and Pr(Hi) are known, there is no solidly Bayesian
means to test. At any rate, there are two ingredients that we must have –
a maximized likelihood and an appropriate penalty for over-fitting – and we
will attack both in subsequent sections.

2 Maximized Likelihood

2.1 The AR Case

According to the AR model

u[n] = ν[n]−
M−1∑
k=1

a∗ku[n− k] (10)

the best predictor for {u[n]} based on the past is

û[n] =
M−1∑
k=1

a∗ku[n− k] (11)

2



which leaves prediction error {ν[n]} having power σ2
ν – which we usually

call {fm[n]} and Pm for the mth-order model – which according to (10) is a
white time sequence. It’s easy to see that we have

log(p(u)) =
N−1∑
n=0

log(p(u[n]|u[n− 1], . . . , u[0]) (12)

−→
N−1∑
n=0

log(p(u[n]|u[n− 1], . . . , u[n−M ]) (13)

=


(
−
∑N−1

n=0
fm[n]2

2Pm
− N

2 log(2πPm)

)
∈ <(

−
∑N−1

n=0
|fm[n]|2
Pm

−N log(πPm)

)
/∈ <

(14)

Presumably this increases with model-order m and decreases with the num-
ber of data N .

2.2 The Eigen-method Case

Suppose we have {un}Nn=1 that are complex Gaussian based on covariance
matrix R. We have

p({un}Nn=1) =
1

|πR|N
e−
∑N

n=1
uHn R−1un (15)

=
1

|πR|N
e−Tr(

∑N

n=1
uHn R−1un) (16)

=
1

|πR|N
e−Tr(R

−1
∑N

n=1
unuHn ) (17)

=
1

|πR|N
e−NTr(R

−1R̂) (18)

where of course

R̂ ≡ 1

N

N∑
n=1

unu
H
n (19)

Our goal is to maximize (18) with respect to R. But since this is an eigen-
method, we constrain R̂ to be of reduced rank, say p < M .

Let us begin by assuming that the eigenvalues of R (i.e., {λi}) are fixed
– this means that |R| is also fixed. We write

R̂ =
M∑
i=1

λ̂iv̂iv̂
H
i (20)

3



as the eigendecomposition of the empirical covariance matrix. We then have

Tr(R−1R̂) =
M∑
i=1

λ̂iTr(R
−1v̂iv̂

H
i ) (21)

=
M∑
i=1

λ̂iTr(v̂
H
i R−1v̂i) (22)

≥
M∑
i=1

λ̂(i)/λ(i) (23)

where λ̂(1) ≥ λ̂(2) ≥ . . . ≥ λ̂(M) and λ(1) ≥ λ(2) ≥ . . . ≥ λ(M). Equation (23)
follows from the same logic that we applied to minimize the Frobenius norm
of a low-rank approximation to a given matrix; the difference is that there
we minimized the Frobenius norm and hence maximized the trace-term; here
we are minimizing the trace term and hence we match the largest λ̂i with
the smallest λ−1

i – which means the largest λ̂i is paired to the largest λi,
second-largest to second-largest, etc. We thus have

log(p({un}Nn=1)) = N
M∑
i=1

λ̂(i)/λ(i) −
M∑
i=1

N log(πλ(i)) (24)

We take the gradient with respect to {λ(i)}Mi=1 under the constraint that
λ(i) = λ0 for p < i ≤M . Setting it to zero we have

0 = −
Nλ̂(i)

λ2
(i)

+
N

λ(i)
(25)

=⇒ λ(i) = λ̂(i) (26)

for i ∈ {1, p}, and

0 = −N
M∑

i=p+1

λ̂(i)

λ2
0

+ N

(
M − p
λ0

)
(27)

=⇒ λ0 =
1

M − p

M∑
i=p+1

λ̂(i) (28)

for i ∈ {p+ 1,M}. Clearly the maximum

log(p({un}Nn=1))

≤ N

 p∑
i=1

λ̂(i)

λ̂(i)

+

∑M
i=p+1 λ̂(i)

1
M−p

∑M
i=p+1 λ̂(i)
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− N

 p∑
i=1

log(πλ̂(i)) + (M − p) log

π 1

M − p

M∑
i=p+1

λ̂(i)

 (29)

= −N

p + (M − p) +
M∑
i=1

log(λ̂(i)) − (M − p)
M∑

i=p+1

log

(
λ̂

1
M−p
(i)

)
− N

M log(π) + (M − p) log

 1

M − p

M∑
i=p+1

λ̂(i)

 (30)

= N

(M − p) log


(∏M

i=p+1 λ̂(i)

) 1
M−p

1
M−p

∑M
i=p+1 λ̂(i)

−M log(πe)− log(|R̂|)

 (31)

So, in words: the hard work of the test statistic is done by the ratio of the
geometric to arithmetic means of the eigenvalues in the (empirical) noise
subspace.

2.3 A Little Bit of Random Matrix Theory

RMT is an emerging field for statisticians, with much activity. The results
are not simple to prove, and no effort will be given here to offer proofs.
There are applications in testing and especially in communications. Signal
processors are interested, but are struggling to find applications.

First, please be aware that we are interested (here) in square Hermitian
matrices. There are two such classes. The first is the Wigner class that
involves an M ×M matrix A = AH that is composed of zero-mean complex
Gaussian random variables with 1/M as their variance1. The second is the
Wishart class of random matrices where

R̂ =
1

N

N∑
n=1

unu
H
n (32)

where E{unuHn } = S which is of dimension M ×M . In the Wishart class
we sometimes are interested in asymptotics where

lim
N→∞

{
M

N

}
= γ (33)

shows that there is a scaling between matrix size and estimation accuracy
– it does not apply to a situation of near-convergence to a good estimate of
the covariance matrix.

1Obviously this can be scaled; but all entries must be iid.
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Wishart Density. It can be shown that the probability density function
(pdf) of R̂ is

p(R̂) =

∣∣∣R̂∣∣∣N−M−1
e−

1
2
Tr(S−1R̂)

2
MN
2 |S|

N
2 ΓM (N2 )

(34)

where

ΓM

(
N

2

)
≡ π

M(M−1)
4

M∏
i=1

Γ

(
N

2
− i− 1

2

)
(35)

is the “multi-variate Gamma function” and in which Γ denotes the
usual Gamma function. The pdf (34) is usually written as R̂ ∼
WM (S, N). It is not asymptotic, and applies for any N and M . The
pdf (34) looks fascinating, but I’ll admit that I’ve never seen an ap-
plication of the Wishart pdf.

Semi-Circle Law. This applies to the Wigner case. It says that the marginal
pdf of any eigenvalue has pdf

p(λ) =

√
4− λ2

2π
(36)

This (36) is not precisely the pdf for any finite-size matrix, but can be
shown to be the asymptotic pdf as M →∞.

Marcenko-Pastur Law. This is the analog of (36) for Wishart matrices,
which is probably more useful for us. In this case the result is asymp-
totic: the scaled situation of (33). For the case γ < 1 we have

p(λ) =


√

(b+−λ)(λ−b−)

2πγλ b− ≤ λ ≤ b+
0 else

(37)

in which

b− ≡ (1−√γ)2 (38)

b+ ≡ (1 +
√
γ)2 (39)

For γ > 1 we have

p(λ) =
1

1− γ
δ(λ) +

1

γ


√

(b+−λ)(λ−b−)

2πγλ b− ≤ λ ≤ b+
0 else

(40)

in which

b− ≡ 0 (41)

b+ ≡ (1 +
√
γ)2 (42)
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This difference – that there are zero eigenvalues – is not so surprising,
in that if γ < 1 it is necessarily that R̂ be singular, since there are
fewer snapshots than dimensions.

There are (many) other interesting RMT results. One example is the Tracy-
Widom theory for the pdf of the largest eigenvalue. Obviously this would
be quite useful when testing for a nontrivial signal subspace from data. It is
not presented since it is quite complex.

2.4 Asymptotic Distribution of the MLE

Under mild but non-trivial regularity conditions the MLE θ̂ can be con-
verges, as the number of samples upon which is computed goes to infinity,
to Gaussian, with mean θ (the true parameter) and covariance J−1

θ ; that is,
we have

p(θ̂) ≈
√∣∣∣∣Jθ2π

∣∣∣∣e− 1
2

(θ̂−θ)TJθ(θ̂−θ) (43)

The latter quantity Jθ is the Fisher information matrix (FIM). Generally
one does not know the true θ so one is content to use Jθ̂ – this is called the
observed information (OI), which has little theoretical backing but it often
useful in situations where Jθ is not independent2 of θ. There is nothing to
be embarrassed about in using the OI instead of the FIM; just be aware that
it is an approximation.

3 Penalty Criteria

If we knew Pr(Hi) and p(θ|Hi) then we would have (1) as

Hj = arg max
Hi

{∫
p(u|Hi, θ)p(θ|i)dθPr(Hi)

}
(44)

and we would be done. We know neither. But we would like some means to
penalize more-complex models, such that we could select

Hj = arg max
Hi

{∫
p(u|Hi, θ)p(θ|i)dθPr(Hi)− κp

}
(45)

2An example of such lack of dependence is the estimation of the mean of Gaussian
data; but such nice behavior is the exception rather than the rule.
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as the penalty that applies to a model with p free parameters (such3 as
AR(p)). But in fact we need more than this, since some pth-order models
are more attractive than others. It is bests to let the data decide.

There are several “penalty terms” for model order that have some ap-
peal: the Akaike information criterion (AIC), Rissanen’s minimum descrip-
tor length (MDL) and the Bayesian information criterion (BIC) come to
mind. There are others, and it is a field of continual developments. No
penalty term has a really rigorous development; but that is forgivable since
the problem of model order selection (without prior information) is not well-
posed.

3.1 AIC

First, please recall (or be introduced to) the Kullback-Leibler (KL) diver-
gence between to probability measures (densities)

dkl(p, q) ≡
∫
p log

(
p

q

)
(46)

We have dkl = 0 if and only if p = q; otherwise dkl > 0. The KL divergence
has a great deal of importance in information theory, and is of paramount
importance in large deviations theory where it describes convergence expo-
nents. And, indeed, if p(x, y) is a joint distribution and q(x, y) has the same
marginals but is the special case that the two are independent, then dkl(p, q)
is the same as Shannon’s Information. But for our purposes, just be aware
that dkl is a measure of the difference between p and q.

Akaike assumed:

θ0 is the true parameter for the true model, which has dimension (number
of parameters to be estimated) p0.

θ is the expected value of the parameter, of order p, for the model being
tested.

θ̂ is the maximum-likelihood estimate (MLE) of the parameter, of order p,
for the model being tested.

Akaike in 1975 wanted to choose the best model in the sense of minimizing

dkl(pθ0 , pθ) ≡
∫
pθ0 log

(
pθ0
pθ

)
(47)

3In the eigenmethod case, the number of free parameters, in the notation just used,
is pM , corresponding to the requisite eigenvalues and eigenvectors in the signal-subspace.
It is noted that each eigenvector only requires M − 1 parameters due to its unit-length
requirement.
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which amounts to maximizing∫
pθ0(u) log (pθ(u)) du (48)

where we have defined u ≡ {un}Nn=1. Under the the assumption that θ̂ is
sufficient for θ we have both

pθ(u) = pθ̂(u)pθ(θ̂) (49)

which follows from the factorization theorem for sufficient statistics; and the
asymptotic MLE distribution expression (43). Substituting (49) and (43)
into (48) we propose to maximize∫

pθ0(u)

(
log

(
pθ̂(u)

)
− 1

2
(θ̂ − θ)TJθ(θ̂ − θ) +

1

2
log

(∣∣∣∣Jθ2π

∣∣∣∣)) du (50)

over the model type and order.
The AIC development says that the first term in (50) is the maximized

likelihood. The second term assumes that the covariance is indeed J−1, so
the expectation results in p, the dimension of θ̂. The third term is ignored.
Hence in its raw form the AIC maximizes

arg max
p

{
max
θ∈Θp
{log(p({un}Nn=1))} − p

}
(51)

As can be seen, however, (at least) these problems can be identified:

• The integration in the first term of (50) is ignored.

• It is not clear why J−1 should be the covariance in the second term of
(50) when θ0 is true.

• It is unclear why the third term in (50) can be ignored.

• It is unexplained why the integration in (48) should be over u when
in fact u is known.

There is a “corrected” form of the AIC for finite data sizes – that is, finite
N . It is

arg max
p

{
max
θ∈Θp
{log(p({un}Nn=1))} − Np

N − p

}
(52)

The AIC is probably the first attempt to address the issue of model-order
selection, and should be complimented for that; and in fact it works reason-
ably well for small N . But its development is a Swiss cheese.
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3.2 MDL

Rissanen originally developed the MDL with an idea from information the-
ory. A nice intuition is from a notional example. Consider we have an
alphabet of 2 letters (OK: here “letters” means bits), N data from this
alphabet, and two coding strategies:

1. Treat all symbols are equally likely. N data can be represented by N
bits.

2. Randomly4 generate 210 symbol-probability choices {{pi,n}32
i=1}1024

n=1 , in
which pi,n is the probability of symbol i under model n, and of course
we must have

∑32
i=1 pi,n = 1. Then for the N data perform a Huffman

coding procedure for each {pi,n}32
i=1. Use the shortest coded symbol

stream, which should be less than N . Since you must also encode the
identity of the code used, the number of coded bits is minn{NL̄n}+10.

Clearly there is more “overhead” needed in the second strategy5; but if
the data fits it better (shorter coded length) by enough compared to the
overhead, then it might be a better strategy. Suppose we used 220 {pi,n}’s
– presumably the best L̄n should be lower than for 210, but is it worth the
extra 10 bits needed to tell the decoder which codebook we used?

As I indicated, RIssanen originally was motivated by the ideas above –
find the best encoding of the data – which is reminiscent both of Kolmogorov
complexity theory and of “universal” source coding. But I find Djuric’s 1998
paper the most appealing way to develop MDL. Djuric starts with (1) and
takes Pr(Hi) uniform (and hence ignorable). He then writes

p(u|Hi) =

∫
p(u|θ,Hi)p(θ|Hi)dθ (53)

and takes p(θ|Hi) uniform as well. Let us put this into a form that we can
use:

p(u|Hi) =

∫
p(θ|Hi)eN

[
1
N

∑N

n=1
log(p(u|θ,Hi))

]
dθ (54)

We have to discuss Laplace’s method of integral approximation now.
Consider

I(t) =

∫
V
f(y)e−tg(y)dy (55)

4For uniformity this would be according to the Dirichlet density and model.
5We are not interested in the overhead to compute the codes, although this may be

considerable; we are only interested in the encoded length.
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where g(y) attains its minimum at y = c which is an interior point6 of V .
Then since we know ∇g(y)|y=c = 0 we can approximate

I(t) −→
∫
B(c)

f(c)e−t[g(c)−
1
2

(y−c)TG(y−c)]dy (56)

as t→∞, where B(c) is a small ball surrounding c and

G ≡ ∇2g(y)|y=c (57)

is the Hessian. We get

I(t) −→ f(c)e−tg(c)

√∣∣∣∣ 2πtG
∣∣∣∣ (58)

after integrating and recognizing the multivariate Gaussian form of the in-
tegral.

For us doing the MDL derivation we have the correspondences from our
problem to the Laplace integral and solution in (55)-(58) given by

f(·) ← p(θ|Hi) (uniform) (59)

t ← N (the number of samples) (60)

c ← θ̂ (the MLE) (61)

y ← θ (62)

g(·) ← − 1

N

N∑
n=1

log(p(un|θ,Hi)) (63)

G ← +J1 (64)

where J1 is the FIM for one snapshot of data, and recall the negative sign in
the definition of the FIM when the second-derivative is used. Consequently
we can write

log(p(u|Hi)Pr(Hi)) → log(p(θ̂|Hi)) + log(p(u|θ̂,Hi)) −
p

2
log(2π)

− 1

2
log(|NJ1|) + log(Pr(Hi)) (65)

Ignoring the terms that don’t scale with N – meaning the first, third and
fifth terms – we have at last the task to look for

arg max
p

{
max
θ∈Θp
{log(p({un}Nn=1))} − 1

2
log(|J|)

}
(66)

6The situation that c is on the boundary of V is also treatable by Laplace’s method,
but is not at issue here.
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where J = NJ1 is the FIM of the full data.
One interpretation of (66) is that the penalty term is the maximized

logarithm of (43) – with a zero exponent. That is, it is perhaps a fair point
of comparison of the maximized likelihood against what it should be.

I am very fond of Djuric’s development, and of the “full” result (66).
Nonetheless it is worth mentioning that one might consider setting J =
Nσ2I. In that case we have

log(|J|) = p log(N) + p log(σ2) (67)

Again ignoring the terms not increasing with N , we have the original MDL

arg max
p

{
max
θ∈Θp
{log(p({un}Nn=1))} − p

2
log(N)

}
(68)

which is certainly very simple but gives no visibility into models of the same
order. It is worth mentioning that Rissanen, in later papers, enhanced his
development to incorporate the FIM.

3.3 BIC

The BIC is actually equivalent to the form (68) of the MDL. It is “derived”
by assuming the model is from the exponential family.
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