
ECE 6123
Advanced Signal Processing:
Markov Chain Monte Carlo

Peter Willett

Fall 2017

1 Importance Sampling

1.1 Estimation of Small Probabilities

Suppose we want to estimate a small probability

α ≡ Pr(x ∈ Ω) (1)

This may sound trivial, and it would be if we were interested, say, in the
Ω = {x : x > τ}. But suppose it is not so simple, and Ω is the set of
noise samples1 that produces an error in an OFDM system with LDPC,
zero-forcing equalization and carrier-offset recovery. We have no hope of
an analytic probability calculation, all we can do is simulate and count the
errors. That is, we estimate

α̂ =
1

N

N∑
i=1

I(xi ∈ Ω) (2)

where I is the indicator, N is the number of Monte Carlo trials, these
indexed by i. It is vary simple to see that

E{α̂} =
1

N

N∑
i=1

E{I(xi ∈ Ω)} (3)

=

∫
Ω
p(x)dx = α (4)

which is good news, but

V ar{α̂}
(E{α̂})2

≈ α/N

α2
=

1

Nα
(5)

1Don’t worry if this OFDM stuff means nothing to you; the point is that it’s a com-
plicated event.

1

which is not good news. Equation (5) means that if you want the standard
deviation of α̂ to be (say) less than 10% of its value, you need N > 100/α
MC trials; and if α is 10−8 this can be a chore.

Fortunately we have importance sampling to help. Consider a new esti-
mator

α̂ =
N∑
i=1

I(xi ∈ Ω)
p(xi)

q(xi)
(6)

where p(·) is the true probability density governing whatever is random
about your problem and q(·) some other “importance” pdf that the samples
used to estimate α̂ are actually drawn from. For example, we might have
Ω = {(x1, x2) : (x1 − 10)2 + (x2 − 15)2 ≤ 1} and p(·) bivariate Gaussian
with mean zero and unity variance. It is fairly clear that α̂ from (2) will
include exactly no indicators that “happen” for any reasonable value of N –
it is useless. But suppose we use (6) with q(·) to mean a Gaussian pdf with
mean (10, 15) and variance of 0.5: then many indicators will fire, and each
of them will force the inclusion to the sum in (6) of many relatively small
values determined by the importance weights p(xi)/q(xi).

The variance of (6) is easily seen to be

V ar(α̂) =
1

N

(∫
Ω

p(x)2

q(x)
dx− α2

)
(7)

which is illuminating for two reasons. The first is that it is minimized
(actually cut down to zero) by

q(x) = p(x|x ∈ Ω) =
p(x)I(x ∈ Ω)

α
(8)

which gives us the helpful information that if we already knew the answer
we could easily use MC techniques to find the answer. This actually really
is useful, since it tells us that there is no “magic bullet” for importance-
sampling – choosing a good q(·) is an art form. But (7) also suggests intu-
ition: if we want to have a low variance we should try to reduce the variation
of p(·)/q(·) of Ω as much as we can. By that logic choosing q(·) to have mean
(9, 14) and unity variance in the previous example may be better than the
q(·) given; and mean mean (11, 16) worse.

2

x

q(x)

g(x)

p(x)

1.2 Importance Sampling for Moments

Consider the situation as above, in which we wish to calculate the expected
value of a function g(x) under the pdf p(x). A direct MC implementation
will probably not work very well, since the “active” part of g(x) occurs where
samples from p(x) are rare. Suppose instead we simulate under q(x) as also
indicated in the plot. Then we get

ḡ =
1

N

N∑
i=1

g(xi)
p(xi)

q(xi)
(9)

so that

E{ḡ(x)} =

∫
g(x)

p(x)

q(x)
q(x)dx = E{g(x)} (10)

meaning that the importance-sampling estimator is unbiased for this case,
too.

2 Motivation for Markov Chain Monte Carlo

2.1 Segmentation

Consider the problem that we are given a record of N data: {u[n]} is zero
mean, independent and Gaussian. There are M segments to the data, such
that if ti−i ≤ n < ti then the variance of u[n] is σ2

i – see below. The problem
is that we don’t know the ti’s (but naturally assume t0 = 0 and tM = N−1)
and we don’t know the σ’s. What do we do?

3

t
t1 t2 t3 t4 t5

s2

Suppose we did know the ti’s. Then solving for σi is fairly simple:

σ̂2
i =

1

ti − ti−1

ti−1∑
n=ti−1

u[n]2 (11)

is the maximum-likelihood estimate (MLE). But finding the ti’s is more of
a problem.

Define tī ≡ {t0, . . . , ti−1, ti+1, . . . , tM} and assume the prior information
is (on t, say) is uniform. We write

p(ti|tk̄,u) =
p(t|u)

p(tī|u)
(12)

∝ p(t|u) (13)

∝ p(u|t) (14)

∝ p({u[n]}ti−1
n=ti−1

|σ2
i)× p({u[n]}ti+1−1

n=ti |σ
2
i+1) (15)

=

 ti−1∏
n=ti−1

1√
2πσ2

i

e
−u[n]

2

2σ2
i

ti+1−1∏
n=ti

1√
2πσ2

i+1

e
− u[n]2

2σ2
i+1

 (16)

where (14) follows from a assumption of uniformity on t and (15) from the
fact that none of the other segments depends on tk, only the one preceding
and succeeding it. Note that (15) is a set of ti+1 − ti−1 − 1 likelihoods that
can be normalized to give a probability mass function. An algorithm follows:

1. Generate some initial ti(0)’s. The initial set does not matter, but a
uniform spacing is probably best. Set the iteration counter k = 1.

2. Calculate {σ̂2
i (k)}Mi=1 according to (11).

3. Set i = 1.

4. Draw ti(k) according to

ti(k) ∼ p({u[n]}ti−1
n=ti−1(k)|σ

2
i (k))× p({u[n]}ti+1(k−1)−1

n=ti |σ2
i+1(k)) (17)

This is from (15) and is made explicit in (16).

4

5. Set i← i+ 1 and if i < M go to 4.

6. Set k ← k + 1 and go to 2 if k ≤ K.

Here K is the number of iterations to perform, and Kb is some number that
will be elided as “burn-in” samples. At the end, estimate

t̂i =
1

K −Kb

K∑
k=Kb+1

ti(k) (18)

for the average. Actually we could take the variance as well to determine
our posterior variance, as we shall see. But what gives us any right to do
such an operation and expect any meaning at the end?

2.2 Bayesian Inference Networks

Actually the procedure just discussed2 is Gibbs sampling, which is far more
general. An example, perhaps the canonical one, is the Bayesian Inference
Network (BIN), pictured below. The arrows indicate known conditional
probabilities, which are assumed known. Each “node” xi is a hidden state
variable, and the z’s are observations – and of these it is possible that only
a subset is known. For example, x2 might be a stock valuation: underpriced
(0), fairly-priced (1) or overpriced (2) – clearly this is a hidden node that
you are interested in. Maybe x4 is institutional interest in the stock (yes
/ no); and x1 is the company’s growth potential. Observation za might
be existence of a dividend, and zc is the company’s price-to-earnings ratio
– these are both something you can observe. Finally, let’s say that zb is
whether there have been buys of the stock by company insiders – this is
something you might know, but might not.

2Actually it was not quite Gibbs sampling, since the MLE step for the σ’s has no place
with Gibbs.

5

X1 X2

X3

X6 X7 X8 X9

X4 X5

ZDZCZBZA

The same approach as in the previous segmentation example can be used
there. It works best if the nodes can only take on a finite number of values,
but that is not necessary. Specifically, do the following:

1. Initialize the instantiated observation nodes – those z’s that you know
– to their true values. These will never change, of course.

2. Initialize all other nodes to random values: that is, the x(0)i’s and also
the un-instantiated z’s. Set k = 1.

3. For all (uninstantiated) nodes calculate

p(xi) = κ

∏
j∈Sp

p(xi|x(k−1)
j)

∏
j∈Sc

p(x
(k−1)
j |xi)

 (19)

for all possible values of xi, where κ normalizes the sum over these to
unity. The set Sp indicates the parent nodes of xi and Sc the child
nodes; see below for an example.

4. Draw new xi’s from the pmf’s calculated in the previous step.

5. Set k ← k + 1 and go to 3 if k ≤ K.

For example, for x4 we have Sp = {x2} and Sc = {x7, x8}; that is,

p(x4|x(k−1)
4̄

, z) ∝ p(x4,x
(k−1)
4̄

|z) (20)

∝ p(x4|x(k−1)
2)× p(x(k−1)

7 |x4)× p(x(k−1)
8 |x4) (21)

6

Note that although in this algorithm it seems like one generates all of the x(k)

based on x(k−1), it is a perfectly legal algorithm that simply uses whatever
the present node values might be, whether updated or not; that is, (19) may

use a combination of x
(k)
j ’s and x

(k−1)
j ’s.

3 Metropolis-Hastings Algorithm

3.1 Theory

Consider these steps, which form the MH (meta-) algorithm:

1. Initialize x0. Set n = 1.

2. Generate y according to q(y|xn).

3. Generate u uniform on (0, 1).

4. Form

α(xn, y) = min

{
1,

π(y)q(xn|y)

π(xn)q(y|xn)

}
(22)

In this step π(·) is the probability (mass function or density) of the
system you are investigating.

5. If u ≤ α(xn, y) set xn+1 = y. Otherwise keep xn+1 = xn.

6. Increment n← n+ 1. Go to 2 unless finished with iterations.

The choice of q(·|·) is a matter of tuning. The superscript for x refers to the
iteration number.

The probability p(·) is assumed to be available. This latter may seem
strange, but in many problems the overall probability is explicit and what
is sought is a marginal probability of some component. Turning the BIN
previously pictured the overall probability is actually fairly simple to write.
In fact it is

π(x, z) = p(zA|x6)p(zB|x7)p(zC |x8)p(zD|x9)

×p(x6|x3)p(x7|x3, x4)p(x8|x4, x5)p(x9|x5)

×p(x3|x1)p(x4|x2)p(x5|x2)p(x1)p(x2) (23)

which is, as advertised, simple; but p(x4|zA, zC) is not at all simple and
would involve a great deal of awkward summation. Another example is
nonlinear filtering: it is (relatively) easy to write π(x1, . . . , xt, z1, . . . , zt);
but it is not easy to find p(xt|z1, . . . , zt). These are cases in which π(·) is

7

explicit; our goal is to generate samples of x (like {x1, . . . , xt}) such that we
can trivially investigate subsets of them (like xt).

Let us first note that we have

α(u, v)

α(v, u)
=

π(v)q(u|v)

π(u)q(v|u)
(24)

or
π(u)q(v|u)α(u, v) = π(v)q(u|v)α(v, u) (25)

since either the numerator or denominator of the LHS must have been
“clamped” at unity.

Now, (22) instructs us that we have

p(xn+1|xn) = α(xn, xn+1)q(xn+1|xn) (26)

+ δ(xn+1 − xn)

(
1−

∫
α(xn, y)q(y|xn)dy

)
Multiply (26) by π(xn) and we get

π(xn)p(xn+1|xn) = π(xn)α(xn, xn+1)q(xn+1|xn) (27)

+ π(xn)δ(xn+1 − xn)

(
1−

∫
α(xn, y)q(y|xn)dy

)
and inserting (25) we have

π(xn)p(xn+1|xn) = π(xn+1)α(xn+1, xn)q(xn|xn+1) (28)

+ π(xn)δ(xn+1 − xn)

(
1−

∫
α(xn, y)q(y|xn)dy

)
The δ-function allows us to switch the terms, hence we have

π(xn)p(xn+1|xn)

= π(xn+1)α(xn+1, xn)q(xn|xn+1) (29)

+ π(xn+1)δ(xn+1 − xn)

(
1−

∫
α(xn+1, y)q(y|xn+1)dy

)
= π(xn+1)p(xn|xn+1) (30)

Equation (30) tells us that we can identify π(xn) and p(xn+1|xn) as respec-
tively the stationary and transition probability mass functions (or densities)
of a Markov chain. Thus, discarding burn-in (transient) xn’s at the be-
ginning, we know that the xn’s that we accumulate by following the given
procedure are distributed according to π(·). That is, we can do things like
take an average over one of the dimensions to get an expected value.

8

It is interesting that the correctness of the MH algorithm does not depend
on the choice of q(·|·). Nonetheless, the efficiency is strongly connected to
q(·|·): an “aggressive” q(·|·) can cover a lot of ground, but may end up
rejecting many putative samples via α(·, ·); similarly a timid q(·|·) does not
waste samples but may take many iterations to explore its space.

3.2 Special Cases of Metropolis-Hastings

3.2.1 Metropolis Sampler

This is probably the original version, and uses a conditional density q(·|·)
such that

q(v|u) = q(u|v) (31)

An example of such a density is the (obvious) Gaussian: under q(v|u), v is
Gaussian with mean u. If the Metropilis version is used we have

α(xn, y) = min

{
1,

π(y)

π(xn)

}
(32)

The statements recently made about aggressive or timid q(·|·) are very clear
in light of (32).

3.2.2 Independence Sampler

The independence sampler uses

q(v|u) = q(v) (33)

and hence

α(xn, y) = min

{
1,
π(y)q(xn)

π(xn)q(y)

}
(34)

Equation (33) means that its mode of exploration does not depend on its
current knowledge at all – the second pair of MC’s in MCMC are suspect.
But it works, and can be thought of as a way to understand the celebrated
“bootstrap” particle filter.

3.2.3 Gibbs Sampler

This one is slightly trickier to understand. The key is to acknowledge that
xn and y are actually multi-dimensional. Let us use yi to refer to the ith

dimension of y; and yī to refer to all dimensions except the ith. Then
according to the Gibbs idea we use

q(yi|xnī) = π(yi|xnī) (35)

9

meaning that we draw a new ith dimension using the true pdf based on all
other dimensions (which are unchanged). In the BIN formulation we can see
how this is accomplished: for our example, we know how to draw x4 based
on x4̄; and this amounts to (21). Now what is especially interesting about
the Gibbs sampler is that we have

α(xnī , yi) = min

{
1,
π(xi|xnī)π(yi|xnī)

π(yi|xnī)π(xi|xnī)

}
= 1 (36)

which means that the Gibbs Sampler never “rejects”.

4 Particle Filters

The particle filter, an approach to the solution of the Chapman-Kolmogorov
equation (CKE) via a Monte Carlo (MC) method, has evolved considerably
over the last years, and there are many versions. The basic idea is most easily
explained using the first version that was feasible, known as the bootstrap
filter or the sequential importance sampling/resampling (SIR or SIS).

Consider the general Markov chain “target” pdf model, which may be
nonlinear and/or non-Gaussian,

p(x[1:t]) = p(x1)
t∏

k=2

p(xk|xk−1) (37)

in which xk is the nx-dimensional target state at time k,

x[1:t] ≡ {x1, x2, . . . , xt} (38)

and p(xk|xk−1) is the state transition pdf. The assumption of white process
noise is what allows one to write (37) in the product form. As usual, the
measurement sequence must be – conditioned on the state – independent
(i.e., white measurement noise), in which case

p(z[1:t]|x[1:t]) =
t∏

k=1

p(zk|xk) (39)

which again is a fairly arbitrary collection of conditionally-independent pdfs.
To develop the idea of the bootstrap filter, consider the following. Using

the Monte Carlo method, N samples {xi[1:t]}
N
i=1 — multiscan particles, which

are nxt vectors — are drawn from the prior density function p(x[1:t]) shown

10

in (37) Then the likelihood of each such sample is evaluated according to
p(z[1:t]|x[1:t]) in (39). We can normalize these likelihoods to “weights”

ωi
[1:t] =

1

c
p(z[1:t]|xi[1:t]) i = 1, . . . , N (40)

where c is chosen such that
∑N

i=1 ω
i
[1:t] = 1, i.e.,

c ≡
N∑
i=1

p(z[1:t]|xi[1:t]) (41)

The weights in (40) are probabilities, assuming equal priors for the samples
{xi[1:t]}

N
i=1. Then one can claim that the desired posterior p(x[1:t]|z[1:t]) is

well represented by the point-mass pdf (or pmf)

p̂[x[1:t]|z[1:t]] =
N∑
i=1

ωi
[1:t]δ(x[1:t] − xi[1:t]) (42)

assuming N , the number of particles, is sufficiently large.
That the representation is reasonable for the posterior mean

x̂[1:t] ≡
∫
x[1:t]p̂(x[1:t]|z[1:t])dx[1:t]

=

∫ N∑
i=1

ωi
[1:t]x[1:t]δ(x[1:t] − xi[1:t])dx[1:t]

=
N∑
i=1

ωi
[1:t]x

i
[1:t] (43)

is straightforward to see as follows. Consider the expected value of (43) over
the samples {xi[1:t]}

N
i=1

E
{
x̂[1:t]|z[1:t]

}
= E

{
N∑
i=1

ωi
[1:t]x

i
[1:t]

}

=

∫ N∑
i=1

ωi
[1:t]x

i
[1:t]p(x

i
[1:t])dx

i
[1:t]

=

∫ N∑
i=1

1

c
p(z[1:t]|xi[1:t])x

i
[1:t]p(x

i
[1:t])dx

i
[1:t]

≈
∫ N∑

i=1

1

Np(z[1:t])
p(z[1:t]|xi[1:t])x

i
[1:t]p(x

i
[1:t])dx

i
[1:t]

11

=
1

N

N∑
i=1

∫
xi[1:t]p(x

i
[1:t]|z[1:t])dx

i
[1:t]

= E
{
x[1:t]|z[1:t]

}
(44)

The approximation in (44) is that

p(z[1:t]) =

∫
p(z[1:t]|x[1:t])p(x[1:t])dx[1:t]

≈
∫
p(z[1:t]|x[1:t])

N∑
i=1

1

N
δ(x[1:t] − xi[1:t])dx[1:t]

=
1

N

N∑
i=1

p(z[1:t]|xi[1:t]) =
c

N
(45)

The above forms the basis for particle filter-based track-likelihood eval-
uation and track-testing

p(z[1:t]) = p(z(t)|z[1:t−1])p(z[1:t−1])

= p(z[1:t−1])

∫
p(zt|xt)p(xt|z[1:t−1])dxt

≈ p(z[1:t−1])

∫
p(zt|xt]

1

N

N∑
i=1

δ[xt − xit]dxt

= p(z[1:t−1])
1

N

N∑
i=1

p(zt|xit)

=
t∏

k=1

(
1

N

N∑
i=1

p(zk|xik)

)
(46)

similar to the χ2 statistic that one might use in a Kalman filter context,
but for more general models. The track likelihood (46) is recognizable as
the product of unnormalized particle weights (which have to be calculated
anyway), and certainly the second formula in (46) shows that it can be
evaluated iteratively.

Consequently an efficient means to generate {xi[1:t]}
N
i=1 — recall that for

an nx-dimensional state, each xi[1:t] is nxt dimensional — is key. The steps
are as follows:

Prediction: Given xi[1:t−1] we draw xit from it according to

xit ∼ p(xit|xit−1) (47)

and thence augment xi[1:t−1] to xi[1:t].

12

Update: Calculate

ωi
[1:t] =

1

c
p(z[1:t]|xi[1:t])

=
1

c′
p(zt|xit)ωi

[1:t−1] (48)

The last line above will, in general, require a new normalization.

Note that (47) and (48) imply that it is not necessary to work with
nxt-dimensional particles {xi[1:t]}

N
i=1 and weights {ωi

[1:t]}
N
i=1. Instead, as a

practical matter all that one need retain is their value at time t: {xit}Ni=1

and weights {ωi(t)}Ni=1, which may be taken as a statement that {xit}Ni=1 and
{ωi(t)}Ni=1 are sufficient for x(t) given observations {zk}tk=1. With reference
to (43), any moment of x(t) can be approximated from these alone.

To be specific about these steps, if one were to use a particle filter to
estimate in a linear/Gaussian situation (which one never would — one would
use a Kalman filter) one would predict by drawing the ith particle at time t
as xit = Fxit−1 + vit, where vit is simply the realization of a Gaussian random
vector with covariance Q. The weight for the ith particle is the likelihood

ωi(t) =
1

c

1√
|2πR|

e−
1
2

[zt−Hxit]
′R−1[zt−Hxit] (49)

with appropriate normalization.
Unfortunately there is a problem — particle degeneracy — namely, the

tendency for all the weights save one to go to zero. This tendency — really
a compulsion in any nontrivial case — arises from the product in (48),
and it severely limited the acceptance of Monte Carlo approaches in their
early days. Fortunately there is a solution: resampling. The especially easy
resampling in the bootstrap filter is to sample with replacement from {xit}Ni=1

according to probabilities {ωi(t)}Ni=1. We note that in a mathematical sense
this sampling is optional, and in some implementations it is performed only
when degeneracy seems to be occurring, not necessarily at every update
step. It is important to realize that such resampling can (and usually does)
result in many repeated (i.e., copied) particles, those corresponding to the
largest likelihoods (the largest ωi(t)’s). This is an evanescent concern, since
the next prediction step in (47) adds different “noise” to each of these.

We therefore restate the operation of the bootstrap filter as

Prediction: For i = 1, . . . , N draw x̃it from xit−1 according to

x̃it ∼ p(xit|xit−1) (50)

13

Update: For i = 1, . . . , N calculate and normalize to unity-sum the weights

ωi(t) =
1

c
p(zt|x̃it) (51)

Resampling: Draw {xit}Ni=1 from {x̃it}Ni=1 according to the pmf {ωi(t)}Ni=1.

This shows that multiscan particles, while helpful to intuition, are not
part of a practical particle filter system. Note that the fact that the re-
sampling operation at t − 1 used {ωi(t − 1)}Ni=1, makes it inappropriate to
use these weights again in the update step for {ωi(t)}Ni=1: only the present
likelihoods are used.

One interesting variation on the particle filter is having xi(t) drawn ac-
cording to some alternative proposal density q(xit|xit−1) for the prediction
instead of the prior (or transition) density p(xit|xit−1). Then this “incorrect”
prediction step can be exactly canceled in the typical importance sampling
manner by using the appropriate importance weight. That is, the three
particle filtering steps become

Importance-Weighted Prediction: Draw x̃it from xit−1, according to

x̃i(t) ∼ q(x̃it|xit−1) (52)

Importance-Weighted Update: Calculate

ωi
[1:t] =

1

c
p(zt|x̃it)

p(x̃it|xit−1)

q(x̃it|xit−1)
(53)

Resampling: Draw {xit}Ni=1 from {x̃it}Ni=1 via the pmf {ωi(t)}Ni=1.

The resampling step is unaffected. That (53) is appropriate, is easily checked
by a development similar to (44)

A properly chosen q(·|·) can “steer” particles to be predicted to places
where they are likely to be corroborated by measurements, namely, (52)
becomes

x̃it ∼ q(x̃it|xit−1; zt) (54)

This is as opposed to the standard procedure (47) and (48) where many
predicted particles can be, in effect, wasted with essentially-zero weights,
leaving relatively few (or no!) “working” particles near where the measure-
ment makes them likely. Common choices for the proposal density include
the transition density with inflated noise, the EKF and UKF.

The key step – which must be credited to Gordon, Salmond & Smith
– in making particle filters practical was resampling and that estimation is

14

performed recursively in time, as opposed to the batch approach with the
notional “multiscan particles” discussed at the beginning of this section. In
addition to proposal density improvements there have been many interesting
variations. One of the most widely accepted is the auxiliary particle filter
that directly uses the measurement at time t to guide the proposal density
selection. It is worth noting that success in dealing with data association
problems has proven elusive to particle filters — this is perhaps despite the
interpretation of measurement origin uncertainty as a form of non-Gaussian
noise. Nonetheless, multiple model systems (of the sort for which the IMM
would be appropriate) can be treated using the Rao-Blackwellization pol-
icy, which splits the inference task into parts that are “easy” to solve (like
filtering with a known mode sequence) relegated to quick algorithms, with
more difficult ones (like mode estimation) that are assigned to particles.

5 The Ensemble Kalman Filter

The EnKF is only really of interest in problems that are extremely large-
scale in their state space, as happens in geophysics and meteorology, for
example. If the state space has dimension of several thousand (or more!)
we might decide to implement a Kalman filter in parallel Monte Carlo form.
That is, many processors each are given responsibility for a few particles –
and the total number of particles across all processors may be less than the
state dimension. It is typical to specify

dimension of observations (m) � number of particles (N)

� dimension of state (n) (55)

for an EnKF to be useful.
Now, consider we have a collection of particles {xi

t−1|t−1}
N
i=1 that rep-

resent the state at time t− 1, and we sample them forward3 to {xi
t|t−1}

N
i=1

according to
xi
t|t−1 = Fxi

t−1|t−1 + vi
t (56)

where vi
t are iid N (0,Q). The natural particle-filter next step is to weight

each particle by the observation likelihood

p(zt|xi
t|t−1) = N (Hxi

t|t−1,R) (57)

As we have discussed earlier, this will require resampling in order to work
well, and resampling is not well suited to parallel implementation.

3This is obvious: coast and add noise.

15

Another approach is to take the ensemble covariance

Q̂ =
1

N − 1

N∑
i=1

(xi
t|t−1)(xi

t|t−1)T −
(

1

N

N∑
i=1

xi
t|t−1

)2

(58)

and thence compute the “optimal” posterior ensemble of particles

xi
t|t = xi

t|t−1 + Q̂HT
(
HQ̂HT + R

)−1 (
zt −Hxi

t|t−1

)
(59)

Unfortunately all the resulting particles are correlated, since all are the result
of the same measurement noise that gave rise to zt. That is,

E
{(

zt −Hxi
t|t−1

) (
zt −Hxj

t|t−1

)T}
(60)

= E
{(

(zt −Hxt)− (Hxi
t|t−1 −Hxt)

)
×
(
(zt −Hxt)− (Hxj

t|t−1 −Hxt)
)T}

(61)

= R (62)

and this is just wrong.
The EnKF idea is to replace (59) by

xi
t|t = xi

t|t−1 + Q̂HT
(
HQ̂HT + R

)−1 (
zit −Hxi

t|t−1

)
(63)

where
zit = zt + wi

t (64)

and wi
t are iid N (0,R), meaning that we actually add noise4 to the mea-

surement before doing the Kalman update: each particle xi
t|t−1 is updated

via its own noisy measurement zit. The ensemble posterior covariance is
obviously correct, too.

The implementation of the EnKF uses, instead of (58),

Q̂ =
1

N − 1
AtA

T
t (65)

where

At ≡

 ↑ ↑ . . . ↑
(x1

t|t−1 − x̄t|t−1) (x2
t|t−1 − x̄t|t−1) . . . (xN

t|t−1 − x̄t|t−1)

↓ ↓ . . . ↓

 (66)

4This is the right thing to do. But I am still emotionally offended by the idea that the
right thing to do is to add noise. It almost implies that the Kalman filter is not optimal.

16

and we also define

D ≡

 ↑ ↑ . . . ↑
z1
t − zt z2

t − zt . . . zNt − zt
↓ ↓ . . . ↓

 (67)

for the observation that has this artificial noise added. Note that the ex-
pected value of the particles has to be calculated, but this is simple since it
is just the mean of the local means at each of the parallel processing units.
Now (63) becomes

At = At−1 + At−1(HAt−1)T
(
(HAt−1)(HAt−1)T + R

)−1
(D− (HAt−1))

(68)
which implies that each particle can be updated in relative isolation, with
the exception that the m × m covariance matrix must be calculated and
inverted. Note that (HAt−1) has dimension m × N – no need for a large
matrix computation.

17

