
ECE 6123
Advanced Signal Processing:
Multi-Rate Signal Processing,

Multi-Resolution Decomposition
and Wavelets

Peter Willett

Fall 2017

1 Decimation and Interpolation

1.1 Decimation

This is a review from basic Digital Signal Processing, but please bear with
it. First, consider the decimation operation

y[n] = x[nD] (1)

in which D is some integer – say, for D = 2 this amounts to forming y[n]
from the even-indexed samples of x[n]. The transform relationship comes
from doing this in two steps:

y[n] = u[nD] where u[n] =

{
x[n] n = mD

0 else
(2)

We begin with the noble identity

N−1∑

p=0

ej2πpm/N = N
∞∑

q=−∞
δ[m− qN] (3)

which is easy to show via the geometric series formula (special case of sum-
ming N 1’s when m = qN).

Now we write

u[n] =
1

D

N−1∑

k=0

ej2πkn/Dx[n] (4)

1

so

U(z) =
∞∑

n=−∞

1

D

N−1∑

k=0

ej2πkn/Dx[n]z−n (5)

=
1

D

N−1∑

k=0

X(ze−j2πk/D) (6)

U(ω) =
1

D

N−1∑

k=0

X (ω − 2πk/D) (7)

It is easy to see that we have

Y (z) =
∞∑

n=−∞
u[nD]z−n (8)

= U(z1/D) (9)

=
1

D

N−1∑

k=0

X(z1/De−j2πk/D) (10)

Y (ω) = U(ω/D) (11)

=
1

D

N−1∑

k=0

X

(
ω − 2πk

D

)
(12)

pp/D

d d

X(w)

p2p/D

d d

U(w)

d d d dd d d d

p

d d

Y(w)

See above for an illustration. Note that in the above figure the bandwidth
of X(ω) is constrained to be less than π/D; if this were not so we would
have aliasing. We are not interested in aliasing in the current discussion.
And in any case we could pre-filter (with an “anti-aliasing” filter) the signal
x[n] to make sure that no frequency components above π/D remain, as in
the figure below.

xorig[n] ∂H(w) ∂D
x [n]

y [n]

2

It is useful to note that if h[n] is finite impulse-response (FIR) of length
L then while each y[n] requires L operations, that means that only L/D
operations are needed per sample of x[n]. It is also worth mentioning that
the case D = 2

Y (z) =
1

2

(
X(z1/2) + X(−z1/2)

)
(13)

Y (ω) =
1

2

(
X
(ω

2

)
+ X

(ω
2

+ π
))

(14)

will especially interest us.

1.2 Interpolation

With reference to the previous discussion, the interpolation essentially refers
to starting with y[n] and re-formulating u[n]. Switching input to x[n] we
thence have

u[n] =

{
x[m] n = mD

0 else
(15)

meaning that between each sample of x[n] we simply insert (D− 1) 0’s. It’s
obvious that we have

U(z) =
∞∑

n=−∞
u[n]z−n (16)

=
∞∑

m=−∞
u[m]z−nD (17)

= X(zD) (18)

U(ω) = X(ωD) (19)

The system is as shown below.

x[n] ∂ G(w)D y [n]
u[n]

And the spectra are as shown here.

pp/D

d d

Y(w)

p2p/D

d d

U(w)

d d d dd d d d

p

d d

X(w)

3

Note that replica spectra appear in U(ω); in many applications it is desirable
to suppress these so we have above represented the final output y[n] as being
after another filter. It is commonly known as an “interpolation” filter since
its function / effect is to insert smoothed values over the (D−1) 0’s that are
in u[n]. Note, again, that since only every Dth sample of u[n] is non-zero
only L/D operations per output of y[n] are needed for this interpolation
operation.

2 Filter Banks

2.1 Transforming Data via the Block-DFT

A transformation of data that concentrates signal energy in a few samples
makes for better signal understanding, representation, manipulation and
coding. One such transformation is the block-DFT.

time
N 2N 3N 4N 5N

fre
qu

en
cy

2p/N
4p/N
6p/N

p

The illustration above is intended to illustrate the shape of the transformed
components to the block-DFT. The block-DFT has several nice properties:

• It is invertible – no information is lost.

• It is orthogonal – if the input is white, the transformed components
are white, too.

• It is efficient – via the FFT it requires only log2(N) operations per
output.

There is one disadvantage, however, and it is perhaps best illustrated in
the notional plot just shown. It is this: high-frequency components corre-
spond to features in the original signal that are of short duration. How-
ever, the time-swath of the DFT is the same for all frequencies: that is, a

4

high-frequency component measures the amount of high-frequency energy
over the entire block of N data. Since high-frequency components are by
their nature fast-changing it would make more sense to have them measur-
ing energy at those frequencies over shorter periods of time as compared
to lower-frequency components that measure long-term trends and smooth
features.

Now, a transformation that is invertible is really, in linear-algebraic
terms, a change of basis. How is a DFT that? Consider

X = Wx (20)

in which

W ≡

1 1 1 1 . . . 1

1 WN W 2
N W 3

N . . . WN−1
N

1 W 2
N W 4

N W 6
N . . . W

2(N−1)
N

1 W 3
N W 6

N W 9
N . . . W

3(N−1)
N

...
...

...
...

. . .
...

1 WN−1
N W

2(N−1)
N W

3(N−1)
N . . . W

(N−1)(N−1)
N

(21)

and of course
WN ≡ e−j2π/N (22)

That is, the DFT operation is really a matrix/vector multiplication. We
know that the FFT gives us an efficient way to implement it – better than
the N2 operations that a direct matrix/vector multiply would normally take
– and we also know that WWH = NI, meaning that it is orthogonal. Are
there other matrices that have the same properties?

2.2 Transforming Data via a Filter Bank

The question was just posed as to whether there any other transformation
matrices that have the same three nice properties as the block-DFT. The
answer is most certainly yes – see the figure below – and, even better, we
have one such that does avoids the block-DFT’s “disadvantage” in terms of
compatibility of time-averaging to frequency. This an “octave” filter bank,
and of course other decimation factors could be imagined.

5

x[n]

∂H1 (w) ∂2

∂H0 (w) ∂2

∂H1 (w) ∂2

∂H0 (w) ∂2

∂H1 (w) ∂2

∂H0 (w) ∂2 …

We will treat invertibility and orthogonality soon. But as for efficiency, let
us assume that both filters H0(ω) and H1(ω) are of length L. Then the
upper-most branch requires L/2 operations per input sample of x[n] and
so does the lower branch. The second level likewise 2L/4. Overall, the
computational load is

L

∞∑

k=0

2−k = 2L (23)

operations per input x[n], assuming that the filter-back goes on “forever.”
In fact – and rather unusually for an FIR filter – we will not be interested
in especially long filters. A value L = 8 is quite normal.

Let’s just pretend that H0(ω) is a perfect LPF with cutoff at π/2 and
that H1(ω) is a perfect HPF also at H0(ω). Then the time-frequency plot
would look like the below.

time

fre
qu

en
cy

p

p/2

p/4

p/8

p/16

2 4 8 16 32

(Please note that only four levels of decimation have been represented here;
in general this is arbitrary, and in principle it can go on . . . forever.) The
point is that the representation may be more appropriate than the block
DFT since components at higher frequencies use data over shorter time
windows.

6

So we have efficiency and appropriateness. Now it is time to discuss
invertibility and orthogonality. Before we begin, however, let us examine
the notional idea that H0(ω) and H1(ω) are a perfect LPF and HPF. It
seems relatively clear that such surgical splitting avoids aliasing and enables
reconstruction. The cost, however, is that L would seem to need to be very
large. But wait! The block DFT actually allows aliasing and uses filters of
length N? It appears that some kinds of aliasing do not destroy information.

3 Perfect-Reconstruction Filter Banks

3.1 The Half-Band Condition

We wish to change the basis via a filter bank, but we demand that we
lose no information as we do so – we could call this invertibility of perfect
reconstruction. The basic building block for analysis is as below, and clearly
we want y[n] = x[n− l] for some l. Note that the two middle blocks (down-
sample then up-sample) may look like they cancel; but they do not, since
their back-to-back pair amounts to setting every other sample to zero.

x[n]

∂H0 (w) ∂2

∂H1 (w) ∂2

∂2

∂2

∂F0 (w)

∂F1 (w)

y[n]

Using what we have discovered about sample-rate conversion, we have after
the up-sample operation on the upper branch

1

2
(H0(z)X(z) +H0(−z)X(−z)) (24)

which means

Y (z) =
1

2
(H0(z)F0(z)X(z) +H0(−z)F0(z)X(−z))

+
1

2
(H1(z)F1(z)X(z) +H1(−z)F1(z)X(−z)) (25)

which means that in order that we have y[n] = x[n− l] we need

H0(z)F0(z) +H1(z)F1(z) = 2z−l (26)

H0(−z)F0(z) +H1(−z)F1(z) = 0 (27)

7

This turns out to be way under-determined. So we adopt the common choice

F0(z) = H1(−z) (28)

so that we require
F1(z) = −H0(−z) (29)

in order to have (27) be satisfied.
It is interesting to substitute (28) and (29) into (26) and then to evaluate

the result at both z and −z; we get

H0(z)F0(z)−H0(−z)F0(−z) = 2z−l (30)

H0(−z)F0(−z)−H0(z)F0(z) = 2(−1)lz−l (31)

which implies that l must be odd.
It is also convenient to define

P (z) ≡ zlH0(z)F0(z) (32)

= zlH0(z)H1(−z) (33)

so since (−z)l = −zl (as l is odd), we can write

P (z) + P (−z) = 2 (34)

This is the half-band condition, and is perhaps familiar as the first Nyquist
criterion for pulse-shaping from digital communications. The half-band con-
dition is sufficient (and by no means necessary!) for perfect reconstruction.
And in fact the half-band condition is itself underdetermined.

3.2 The Haar Example

Here we have

H0(z) =
1√
2

(1 + z−1) (35)

F0(z) =
1√
2

(1 + z−1) (36)

H1(z) =
1√
2

(1− z−1) (37)

F1(z) = − 1√
2

(1− z−1) (38)

8

It is interesting that while (35) is the Haar filter1 and that (37) & (38) follow
from (28) & (29) applied to (35) & (36), the actual choice of (36) is really
quite arbitrary. In fact, inserting (35) into (26) gives us

[F0(z)− F0(−z)] + z−1[F0(z) + F0(−z)] = 2
√

2z−l (39)

(odd-indexed terms) + z−1(odd-indexed terms) =
√

2z−l (40)

This implies that there are only two adjacent non-zero terms in F0(z); it
makes sense to choose a first-order F0(z), but we still have

f0[1]z−1 + z−1(f0[0]) = 2
√

2z−l (41)

from (39). For symmetry and linear phase we choose (36).

x[n]

∂ ∂2

∂ ∂2

∂2

∂2

y[n]

A B C D

E F G H

x[n]

∂1+z-1 ∂2

∂ ∂2

∂2

∂2

∂

∂

y[n]

1+z-1

1-z-1 -(1-z-1)

A B C D

E F G H

1p
2

�
1 + z�1

�
(37)

1p
2

�
1� z�1

�
(38)

� 1p
2

�
1� z�1

�
(39)

The figure above shows a scaled version of the Haar system. We have:

A: . . . , x[0] + x[�1], x[1] + x[0], x[2] + x[1], x[3] + x[2], x[4] + x[3], . . .

B: . . . , x[0] + x[�1], x[2] + x[1], x[4] + x[3], . . .

C: . . . , x[0] + x[�1], 0, x[2] + x[1], 0, x[4] + x[3], . . .

D: . . . , x[0] + x[�1], x[0] + x[�1], x[2] + x[1], x[2] + x[1], x[4] + x[3], . . .

E: . . . , x[0]� x[�1], x[1]� x[0], x[2]� x[1], x[3]� x[2], x[4]� x[3], . . .

F: . . . , x[0]� x[�1], x[2]� x[1], x[4]� x[3], . . .

G: . . . , x[0]� x[�1], 0, x[2]� x[1], 0, x[4]� x[3], . . .

H: . . . , x[�1]� x[0], x[0]� x[�1], x[1]� x[2], x[1]� x[2], x[3]� x[4], . . .

y: . . . , 2x[�1], 2x[0], 2x[1], 2x[2], 2x[3], . . .

9

x[n]

∂1+z-1 ∂2

∂ ∂2

∂2

∂2

∂

∂

y[n]

1+z-1

1-z-1 -(1-z-1)

A B C D

E F G H

1p
2

�
1 + z�1

�
(37)

1p
2

�
1� z�1

�
(38)

� 1p
2

�
1� z�1

�
(39)

The figure above shows a scaled version of the Haar system. We have:

A: . . . , x[0] + x[�1], x[1] + x[0], x[2] + x[1], x[3] + x[2], x[4] + x[3], . . .

B: . . . , x[0] + x[�1], x[2] + x[1], x[4] + x[3], . . .

C: . . . , x[0] + x[�1], 0, x[2] + x[1], 0, x[4] + x[3], . . .

D: . . . , x[0] + x[�1], x[0] + x[�1], x[2] + x[1], x[2] + x[1], x[4] + x[3], . . .

E: . . . , x[0]� x[�1], x[1]� x[0], x[2]� x[1], x[3]� x[2], x[4]� x[3], . . .

F: . . . , x[0]� x[�1], x[2]� x[1], x[4]� x[3], . . .

G: . . . , x[0]� x[�1], 0, x[2]� x[1], 0, x[4]� x[3], . . .

H: . . . , x[�1]� x[0], x[0]� x[�1], x[1]� x[2], x[1]� x[2], x[3]� x[4], . . .

y: . . . , 2x[�1], 2x[0], 2x[1], 2x[2], 2x[3], . . .

9

∂

x[n]

∂1+z-1 ∂2

∂ ∂2

∂2

∂2

∂

∂

y[n]

1+z-1

1-z-1 -(1-z-1)

A B C D

E F G H

1p
2

�
1 + z�1

�
(37)

1p
2

�
1� z�1

�
(38)

� 1p
2

�
1� z�1

�
(39)

The figure above shows a scaled version of the Haar system. We have:

A: . . . , x[0] + x[�1], x[1] + x[0], x[2] + x[1], x[3] + x[2], x[4] + x[3], . . .

B: . . . , x[0] + x[�1], x[2] + x[1], x[4] + x[3], . . .

C: . . . , x[0] + x[�1], 0, x[2] + x[1], 0, x[4] + x[3], . . .

D: . . . , x[0] + x[�1], x[0] + x[�1], x[2] + x[1], x[2] + x[1], x[4] + x[3], . . .

E: . . . , x[0]� x[�1], x[1]� x[0], x[2]� x[1], x[3]� x[2], x[4]� x[3], . . .

F: . . . , x[0]� x[�1], x[2]� x[1], x[4]� x[3], . . .

G: . . . , x[0]� x[�1], 0, x[2]� x[1], 0, x[4]� x[3], . . .

H: . . . , x[�1]� x[0], x[0]� x[�1], x[1]� x[2], x[1]� x[2], x[3]� x[4], . . .

y: . . . , 2x[�1], 2x[0], 2x[1], 2x[2], 2x[3], . . .

9

∂

x[n]

∂1+z-1 ∂2

∂ ∂2

∂2

∂2

∂

∂

y[n]

1+z-1

1-z-1 -(1-z-1)

A B C D

E F G H

1p
2

�
1 + z�1

�
(37)

1p
2

�
1� z�1

�
(38)

�1p
2

�
1� z�1

�
(39)

The figure above shows a scaled version of the Haar system. We have:

A: . . . , x[0] + x[�1], x[1] + x[0], x[2] + x[1], x[3] + x[2], x[4] + x[3], . . .

B: . . . , x[0] + x[�1], x[2] + x[1], x[4] + x[3], . . .

C: . . . , x[0] + x[�1], 0, x[2] + x[1], 0, x[4] + x[3], . . .

D: . . . , x[0] + x[�1], x[0] + x[�1], x[2] + x[1], x[2] + x[1], x[4] + x[3], . . .

E: . . . , x[0]� x[�1], x[1]� x[0], x[2]� x[1], x[3]� x[2], x[4]� x[3], . . .

F: . . . , x[0]� x[�1], x[2]� x[1], x[4]� x[3], . . .

G: . . . , x[0]� x[�1], 0, x[2]� x[1], 0, x[4]� x[3], . . .

H: . . . , x[�1]� x[0], x[0]� x[�1], x[1]� x[2], x[1]� x[2], x[3]� x[4], . . .

y: . . . , 2x[�1], 2x[0], 2x[1], 2x[2], 2x[3], . . .

9

The figure above shows a scaled version of the Haar system. We have:

A: 1√
2
{. . . , x[0] + x[−1], x[1] + x[0], x[2] + x[1], x[3] + x[2], x[4] + x[3], . . .}

B: 1√
2
{. . . , x[0] + x[−1], x[2] + x[1], x[4] + x[3], . . .}

C: 1√
2
{. . . , x[0] + x[−1], 0, x[2] + x[1], 0, x[4] + x[3], . . .}

D: 1
2 {. . . , x[0] + x[−1], x[0] + x[−1], x[2] + x[1], x[2] + x[1], x[4] + x[3], . . .}

E: 1√
2
{. . . , x[0]− x[−1], x[1]− x[0], x[2]− x[1], x[3]− x[2], x[4]− x[3], . . .}

F: 1√
2
{. . . , x[0]− x[−1], x[2]− x[1], x[4]− x[3], . . .}

G: 1√
2
{. . . , x[0]− x[−1], 0, x[2]− x[1], 0, x[4]− x[3], . . .}

H: 1
2 {. . . , x[−1]− x[0], x[0]− x[−1], x[1]− x[2], x[1]− x[2], x[3]− x[4], . . .}

y: {. . . , x[−1], x[0], x[1], x[2], x[3], . . .}
1The Haar filter is just a running two-sampler average.

9

The last line (the final output y[n]) is obtained from adding the signals at
D and H. Note that it is identical to the input x[n] – perfect recovery! –
except for a delay by a single time-step (l = 1).

One more note on the Haar system is appropriate. Consider the octave
filter bank structure, with the Haar filter and the change-of-basis interpre-
tation (20). Stopping after three levels, the matrix W is

W = (42)

a −a 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 a −a 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 a −a 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 a −a 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 a −a 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 a −a 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 a −a 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 a −a
b b −b −b 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 b b −b −b 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 b b −b −b 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 b b −b −b
c c c c −c −c −c −c 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 c c c c −c −c −c −c
d d d d d d d d −d −d −d −d −d −d −d −d
d d d d d d d d d d d d d d d d

where a = 1/
√

2, b = 1/2, c = 1/
√

8, d = 1/4. What is intended to
be illustrated here is that the basis vector is the same at all levels, just
translated within that level and dilated (by a factor of two) as the level is
deepened. So if an artifact has a good projection onto (match with) some
basis, the same artifact dilated by a factor of two would appear at a deeper
level. This is why this is said to be a decomposition according to scale.

4 Orthogonal Filter Banks

To avoid too much subscripting, and to be in commonality with the litera-
ture, we’ll switch from H0(z) & H1(z) to C(z) & D(z), as shown below.

10

x[n]

∂D(z) ∂2

∂C(z) ∂2

∂D(z) ∂2

∂C(z) ∂2

∂D(z) ∂2

∂C(z) ∂2 …

u[n]

v[n]

It’s worth expressing the output of the top two branches as a matrix-vector
multiplication, shown in (43) for L = 4:

...
u[n]
v[n]

u[n− 1]
v[n− 1]

...

=

...
...

...
...

...
...

...
c0 c1 c2 c3 0 0 . . .
d0 d1 d2 d3 0 0 . . .
0 0 c0 c1 c2 c3 . . .
0 0 d0 d1 d2 d3 . . .
...

...
...

...
...

...
...

...
x[n]

x[n− 1]
x[n− 2]
x[n− 3]
x[n− 4]
x[n− 5]

...

(43)

For orthogonality we require

∑

n

cncn−2k = δ[k] (44)

∑

n

cndn−2k = 0 (45)

∑

n

dndn−2k = δ[k] (46)

As usual we have rather too much freedom to select the filters. For now
assume that {c[n]} is already picked. The Smith-Barnwell/Mintzer choice
for {d[n]} is

D(z) = −z−(L−1)C(−z−1) (47)

= −z−(L−1)(c0 − c1z + c2z
2 − . . .+ (−1)(L−1)cL−1z

L−1) (48)

= (−1)LcL−1 + . . .− c2z
−(L−3) + c1z

−(L−2) − c0z
−(L−1) (49)

The Smith-Barnwell/Mintzer choice is not the only one, but it is fairly nice
for the following reasons.

11

Smith Barnwell/Mintzer is Nice: Perfect Reconstruction
According to (33) we define, with l = L− 1,

P (z) = z(L−1)H0(z)H1(−z) (50)

= z(L−1)C(z)D(−z) (51)

= z(L−1)C(z)(−(−z)−(L−1)C(z−1)) (52)

= C(z)C(z−1) (53)

since l = L− 1 has to be odd. Now, notice that this refers to

p[n] = c[n] ? c[−n] (54)

Looking at (44) and realizing that this is a constraint on the down-
sampled {p[n]}, we have

P (z) + P (−z) = 2 (55)

or
C(z)C(z−1) + C(−z)C(−z−1) = 2 (56)

What this means is that (44) is the same as the half-band condition
from (34). If we select C(z) to satisfy (55) then we have both perfect
reconstruction and one out of three conditions for orthogonality.

Smith Barnwell/Mintzer is Nice: Self-Orthogonality
We just found out that if (44) with the Smith-Barnwell-Mintzer condi-
tion (44) then we have perfect reconstruction (invertibility). We also
have the same property for {d[n]}:

D(z)D(z−1) +D(−z)D(−z−1)

= (−z−(L−1)C(−z−1))(−z(L−1)C(−z))
+(z−(L−1)C(z−1))(z−(L−1)C(z)) (57)

= Q(z) +Q(−z) (58)

That is, if C(z) is chosen to satisfy (56) then both (44) and (46) are
satisfied.

Smith Barnwell/Mintzer is Nice: Cross-Orthogonality
Just as good, we have

C(z)D(z−1) + C(−z)D(−z−1)

= C(z)(−z(L−1)C(−z)) + C(−z)(z−(L−1)C(z)) (59)

= 0 (60)

so (45) is satisfied as well. That is, we have orthogonality!

12

This “half-band” condition – introduced as a sufficient condition for per-
fect reconstruction (invertibility) in (34) and rediscovered as a by-product
of the Smith-Barnwell/Mintzer choice in (55) that also gives orthogonality
– is also known as the first Nyquist condition in digital communications. It
is perhaps worth mentioning that any filter satisfying the half-band condi-
tion gives rise to a structure commonly known as a quadrature mirror filter
(QMF) bank. Below we see three possible configurations for a viable P (z).

p

P(w)

p

P(w)

p

P(w)

2 2

p/2 p/2 p/2

2

On the left is the rather obvious brick-wall filter. This is fine, but even to
approximate it requires a very large L: no good. The middle is better, and
it becomes clear how aliasing is not the deal-killer we thought it might be.
On the right is the “raised-cosine” filter that uniquely satisfies both first
and second Nyquist criteria. Here we have

P (ω) = 1 + cos(ω) (61)

=
1

2
ejω + 1 +

1

2
e−jω (62)

P (z) =
1

2
z + 1 +

1

2
z−1 (63)

and since P (z) = C(z)C(z−1) this means

C(z) =
1√
2

(1 + z−1) (64)

That is, the raised-cosine filter and the Haar filter are the same thing.
As a side note, it is interesting to ask whether filters can be orthogonal

and linear-phase. A linear-phase filter structure

{c0, c1, c2, , . . . , ±c2, ±c1, ±c0 } (65)

meaning that the impulse response is either even or odd symmetric. Clearly
the Haar filter works, it is even symmetric and hence linear-phase. For a
filter of length (L = 4) we interrogate (44) for k = 1 and find it implies

±2c0c1 = 0 (66)

13

which means that any such filter has only two identical non-zero coefficients,
and since L = 4 it means c1 = 0. Similar analysis for L = 6, 8, . . . finds the
same conclusion: c0 is the only non-zero coefficient. While this is slightly
different from the Haar filter it possesses no new richness, so we do not
pursue it: aside from L = 2 (Haar) linear-phase is out of the question if
orthogonality is desired.

5 Daubechies Filters

5.1 The Max-Flat Idea

The half-band conditions (resulting from the choice (28)) and even the
Smith-Barnwell/Mintzer choice are decent but non-unique ways to get per-
fect reconstruction and orthogonality, respectively. But even the latter
does not specify C(z), only the half-band condition that C(ω) must sat-
isfy. Daubechies came up with a set of conditions that are often thought
to give the “best” QMF. Her idea is to look for a filter that is both short
(small L) and decently frequency-selective.

5.2 The Really Technical Development

The development is rather indirect. Here goes. Consider the function

(1− y)−p =
∞∑

k=0

(
p+ k − 1

k

)
yk (67)

We will truncate this to p terms

B(y) =

p−1∑

k=0

(
p+ k − 1

k

)
yk (68)

= 1 + py +

(
p+ 1

2

)
y2 + . . .+

(
2p− 1
p− 1

)
yp−1 (69)

Now

P̃ (y) ≡ 2(1− y)pB(y) (70)

= 2(1− y)p((1− y)−p +O(yp)) (71)

= 2 +O(yp) (72)

Now, notice from (72) we have

P̃ ′(y)|y=0 = P̃ ′′(y)|y=0 = . . . = P̃ (p−1)(y)|y=0 = 0 (73)

14

and likewise we have

P̃ ′(y)|y=1 = P̃ ′′(y)|y=1 = . . . = P̃ (p−1)(y)|y=1 = 0 (74)

from (70). Similarly, from (72) we have

P̃ (0) = 2 (75)

and
P̃ (1) = 0 (76)

from (70). These are the maximum-flatness conditions: the function is flat
and very smoothly so at both y = 0 and y = 1, and decreases from “pass-
band” to “stopband” between. A notion is plotted below.

2

The development is rather indirect. Here goes. Consider the function

(1� y)�p =

1X

k=0

✓
p + k � 1

k

◆
yk (60)

We will truncate this to p terms

B(y) =

p�1X

k=0

✓
p + k � 1

k

◆
yk (61)

= 1 + py +

✓
p + 1

2

◆
y2 + . . . +

✓
2p� 1
p� 1

◆
yp�1 (62)

Now

P̃ (y) ⌘ 2(1� y)pB(y) (63)

= 2(1� y)p((1� y)�p + O(yp)) (64)

= 2 + O(yp) (65)

Now, notice from (65) that the first p� 1 derivatives of P̃ (y) at y = 0 must
be zero; and from (63) the same must be true for the first p� 1 derivatives
at y = 1. Also note that P̃ (0) = 2 from (65); and P̃ (1) = 0 from (63). This
is the maximum-flatness condition: the function is flat and very smoothly
so at both y = 0 and y = 1, and decreases from “passband” to “stopband”
between.

P̃ (y) (66)

13

1

maximally
flat

From (69) and (70) we have that P̃ (y) is a polynomial in y of degree 2p− 1.
As such, P̃ ′(y) is a polynomial in y of degree 2p− 2. And (73) and (74) tell
us what it must be:

P̃ ′(y) = Cyp−1(1− y)p−1 (77)

Since P̃ ′(y) = 0 and hence P̃ ′(1− y) = 0 as well, and since we know

(P̃ (y) + P̃ (1− y))|y=0 = P̃ (y)|y=0 + P̃ (y)|y=1 (78)

= 2 (79)

we can say
P̃ (y) + P̃ (1− y) = 2 (80)

which is looking very close to our half-band condition, except in y as opposed
to z.

15

Now substitute

y ←−
(

1− z
2

)(
1− z−1

2

)
(81)

Note

1− y =
1

4

(
4− (−z + 2− z−1)

)
(82)

=
1

4

(
2 + z + z−1

)
(83)

=

(
1 + z

2

)(
1 + z−1

2

)
(84)

So we substitute
P (z) = P̃ (y)|

y=(1−z
2)

(
1−z−1

2

) (85)

Now we have

P (z) + P (−z)
= P̃ (y)|

y=(1−z
2)

(
1−z−1

2

) + P̃ (y)|
y=(1+z

2)
(

1+z−1

2

) (86)

= P̃ (y)|
y=(1−z

2)
(

1−z−1

2

) + P̃ (1− y)|
y=(1−z

2)
(

1−z−1

2

) (87)

=
(
P̃ (y) + P̃ (1− y)

)
|
y=(1−z

2)
(

1−z−1

2

) (88)

= 2 (89)

so the half-band condition is indeed satisfied by the Daubechies filters!

5.3 How to Make a Daubechies Filter

All we need to do now is to find find one. We need to write

P̃ (y) = 2(1− y)p

(
p−1∑

k=0

(
p+ k − 1

k

)
yk

)
(90)

from (70) and (68). Then we write

P (z) = P̃ (y)|
y=(1−z

2)
(

1−z−1

2

) (91)

= 2

(
1 + z

2

)p(1 + z−1

2

)p

×
p−1∑

k=0

(
p+ k − 1

k

)(
1− z

2

)k (1− z−1

2

)k
(92)

16

from (90), (85) and (84). Finally we must use

P (z) = C(z)C(z−1) (93)

to extract C(z) from P (z).
So let’s try p = 1. From (92) we easily get

P (z) =
1

2

(
(1 + z)(1 + z−1)

)
(94)

and it is easy to apply (94) to (93) to get

C(z) =
1 + z−1

√
2

(95)

which is the Haar filter!
To show something a little more interesting, let us try p = 2. We get

P (z) =
1

8
(1 + z)2(1 + z−1)2

(
1 + 2

(
1− z

2

)(
1− z−1

2

))
(96)

=
−1

16
(1 + z)2(1 + z−1)2

(
z − 4 + z−1

)
(97)

=
−1

16(2−
√

3)
(1 + z)2(1 + z−1)2

×
(

(1− (2−
√

3)z)(1− (2−
√

3)z−1)
)

(98)

meaning that we have

C(z) =
1√
32

(
(1 +

√
3) + (3 +

√
3)z−1 + (3−

√
3)z−2 + (1−

√
3)z−3

)

(99)
This is the D4 filter.

6 Wavelets

6.1 The Telescoping Subspaces

Wavelets are the continuous-time (or -space) version of multi-resolution de-
composition. Begin with telescoping subspaces

V0 ⊂ V1 ⊂ V2 ⊂ V3 ⊂ V4 ⊂ . . . (100)

and require that if f(t) ∈ Vj then

17

1. f(t− k) ∈ Vj , ∀k ∈ I; and

2. f(2t− k) ∈ Vj+1, ∀k ∈ I.

Also assume that there is scaling function φ(t) such that for {φ(t − k)}k∈I
is a basis for V0.

f(t) g(t) f(t)	e V0

f(t)	e V1 f(t)	e V2 w(t)

An example is given above. We seek to approximate the ramp-function
g(t) (top middle) in a telescoping series of spaces that are formed by the
scaling function φ(t), top left. The approximations in V0, V1 and V2 are
shown in top right, bottom left and bottom middle, respectively. It is clear
that the deeper one gets the better the approximation. We also define the
wavelet space W0 with basis w(t) (bottom right), such that

Vj
⋃
Wj = Vj+1 (101)

and
Vj
⋂
Wj = ∅ (102)

The function w(t) is called the mother wavelet.

6.2 Relationship to Multi-Resolution Decomposition

Now, V0 ⊂ V1 means that

φ(t) =
∑

n

cnφ(2t− n) (103)

If we also have {φ(t− k)} orthogonal – and hence {φ(2t− k)} orthogonal –
we can write

cn =

∫
φ(t)φ(2t− n)dt (104)

18

Expressing the orthogonality requirement using this, we have

δ[k] =

∫
φ(t)φ(t− k)dt (105)

=

∫ (∑

m

cmφ(2t−m)

)(∑

n

cnφ(2(t− k)− n)

)
dt (106)

=
∑

n

cncn−2k (107)

It is very interesting that (107) is identical to (44) – that is, the condition
for a telescoping basis based on orthogonal functions is the same as the
condition for a multi-resolution decomposition filter to be orthogonal. Let
us go a little further, and note that since Wj ⊂ Vj+1 we can write

w(t) =
∑

k

dkφ(2t− k) (108)

where

dk =

∫
w(t)φ(2t− k)dt (109)

If we desire orthogonality of {w(t−m)} we have

δ[k] =

∫
φ(t)φ(t− k)dt (110)

=

∫ (∑

m

dkφ(2t−m)

)(∑

n

dnφ(2(t− k)− n)

)
dt (111)

=
∑

n

dndn−2k (112)

and similarly, if orthogonality of Wj to Vj is desired we have

0 =

∫
φ(t)w(t− k)dt (113)

=

∫ (∑

m

ckφ(2t−m)

)(∑

n

dnφ(2(t− k)− n)

)
dt (114)

=
∑

n

cndn−2k (115)

That is, (107), (112) & (115) – demanded for orthogonality of the telescoping
representation – are identical to (44), (46) & (45) for orthogonality of a
multi-resolution decomposition.

19

6.3 How to Make the Mother Wavelet and Scaling Function

So what are φ(t) and w(t)? The relation

φ(t) =
∑

k

ckφ(2t− k) (116)

provides the answer. Take the (continuous-time) Fourier transform

Φ(Ω) =

∫ ∞

−∞
φ(t)e−jΩtdt (117)

=

∫ ∞

−∞

(∑

k

ckφ(2t− k)

)
e−jΩtdt (118)

=
∑

k

cke
−j(Ω

2)k
∫ ∞

−∞
φ(2t− k)e−j(

Ω
2)(2t−k)dt (119)

=
1

2
C

(
Ω

2

)
Φ

(
Ω

2

)
(120)

where
C(ω) ≡

∑

k

cke
−jωk (121)

which of course repeats with period 2π. We are not interested in the factor
of 1

2 in (120) since we normalize to have unit energy; so let us drop it. We
also have for the mother wavelet

W (Ω) =
1

2
D

(
Ω

2

)
Φ

(
Ω

2

)
(122)

Note that as k → ∞ we have Ω
2k
→ 0. We arbitrarily set Φ(0) = 1 – any

non-zero constant will do – so we have

Φ(ω) =
∞∏

k=1

C
(ω

2k

)
(123)

W (ω) = D
(ω

2

) ∞∏

k=2

C
(ω

2k

)
(124)

which explicitly define the (Fourier transforms of the) scaling function and
mother wavelet in terms of chosen multi-resolution filter function.

20

6.4 Compactness of the Scaling Function andMotherWavelet

First, let us observe that (123) and (124) require that C(ω) = 0 else Φ(ω)
goes on forever. Let us also define c(t) via

C(ω) = F [c(t)] (125)

= F
[∑

k

ckδ(t− k)

]
(126)

=

∫ ∞

−∞

∑

k

ckδ(t− k)e−jωtdt (127)

=
∑

k

ckδ(t− k)e−jωk (128)

This is not especially useful except to tell is that c(t) is time-limited if {cn}
is FIR – c(t) has support only on [0, L) (actually [0, L − 1)). Then (123)
implies

φ(t) = c(2t) ? c(4t) ? c(8t) ? c(16t) ? c(32t) ? . . . (129)

meaning that the support of φ(t) can be no greater than of length

L

2
+

L

4
+

L

8
+

L

16
+ . . . = L (130)

That is, the scaling function φ(t) is supported only on [0, L) – it is compact!
The same can be said for the mother wavelet w(t).

Examples of scaling functions and wavelets for the Daubechies-2 (i.e.,
Haar) and Daubechies-4 systems are given below

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

φ(t)

w(t)

21

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

1.5

φ(t)

w(t)

What is striking is that the Haar functions are exactly what one might think,
and basically the same as in the earlier notional cartoon. The Daubechies-4
scaling function and mother wavelet are weird. But they are what they are.

22

