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1 Basics of Spectral Estimation

1.1 Introduction

We are all familiar with the discrete-time Fourier transform (DTFT) and the
discrete Fourier transform (DFT) – the latter being implemented efficiently
via the fast Fourier transform (FFT). The former useful for analyzing deter-
ministic signals; the latter is more practical, and gives a way to understand
the frequency behavior of a signal that is given to you as a time series, one
that may not have an explicit expression that nicely sums to something com-
pact or conversely whose DTF is amenable to integration. But what does it
mean when we take the FFT of a random signal? Here we will explore this;
we will when necessary assume the signal {x[n]}N−1

n=0 is wss, zero mean and
Guassian1.

We begin this section by discussing the periodogram, which is the most
obvious approach to spectral estimation: it has a big problem, which we will
solve later. We continue with a discussion of the meaning of resolution. We
then establish the relationship between spectral estimation and beamforming
– it turns out that much of what we do can be used for array signal processing
provided the source is monochromatic (or can be made to be so by filtering)
and the array is a uniformly-spaced linear array (ULA).

The following sections deal with nonparametric and parametric spec-
tral estimation. As the name implies, non-parametric spectral estimation
makes no assumptions about the nature of the spectrum, and we look at the
Bartlett, Welch and Capon approaches. Parametric methods do make such
an assumption, and the ones we explore here are based on AR models and
on modeling as sinusoids-plus-noise.

1This is only important when we are discussing the periodogram, so explore its consis-
tency. We will assume in that section that x[n] ∈ < for ease of explanation; the complex
case is the same but notationally more difficult
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1.2 The Periodogram

Recall that the power spectrum of a random process {x[n]} is defined as

S(ω) ≡
∞∑

k=−∞
r[k]e−jωk (1)

where {r[k]} is the (usual) autocorrelation r[k] = E{x[n]x[n − k]∗}. How
about we estimate it from our data {x[n]}N−1

n=0 as

Ŝ(ω) ≡ 1

N

∣∣∣∣∣
N−1∑
n=0

x[n]e−jωn
∣∣∣∣∣
2

(2)

that is, as the DTFT magnitude square and suitably2 scaled? Note that the
periodogram is efficiently computed as

Ŝ(ω)|ω= 2πk
N

=
1

N
|X(k)|2 (3)

where X(k) is the kth DFT (or FFT) output.
We need some statistical analysis of the periodogram. We begin with

the mean:

E{Ŝ(ω)} =
1

N
E
{
N−1∑
n=0

N−1∑
m=0

x[n]x[m]∗e−jω(n−m)

}
(4)

=
1

N

N−1∑
n=0

N−1∑
m=0

r[n−m]e−jω(n−m) (5)

=
1

N

N−1∑
k=−(N−1)

(N − |k|)r[k]e−jωk (6)

= S(ω) ? F
[
1− |k|

N

]
(7)

= S(ω) ? WB(ω) (8)

where WB(ω) is the DTFT of the (triangular) Bartlett window wB[k]:

WB(ω) = F
[
1− |k|

N

]
(9)

= F [wB[k]] (10)

=

(
1

N

sin(ωN/2)

sin(ω/2)

)2

(11)

2We will soon see why the scaling.
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That is, the expected value of the periodogram is a smoothed version of the
true power spectrum: it gets convolved with the sinc-squared.

Turning now to the variance, we compute the second moment. We need
here to – briefly – assume3 that {x[n]} is real and Gaussian. We use the
fact that for jointly-Gaussian zero-mean random variables we have

E{ABCD} = E{AB}E{CD} + E{AC}E{BD} + E{AD}E{BC} (12)

We get

E{(Ŝ(ω))2}

=
1

N2
E


N−1∑
n=0

N−1∑
m=0

N−1∑
p=0

N−1∑
q=0

x[n]x[m]x[p]x[q]e−jω(n−m+p−q)

 (13)

=
1

N2

N−1∑
n=0

N−1∑
m=0

N−1∑
p=0

N−1∑
q=0

r[n−m]r[p− q]e−jω(n−m+p−q)

+
1

N2

N−1∑
n=0

N−1∑
m=0

N−1∑
p=0

N−1∑
q=0

r[n− q]r[m− p]e−jω(n−m+p−q)

+
1

N2

N−1∑
n=0

N−1∑
m=0

N−1∑
p=0

N−1∑
q=0

r[n− p]r[m− q]e−jω(n−m+p−q) (14)

= 2|S1(ω)|2 + |S2(ω)|2 (15)

where

S1(ω) ≡ 1

N

N−1∑
n=0

N−1∑
m=0

r[n−m]e−jω(n−m) (16)

S2(ω) ≡ 1

N

N−1∑
n=0

N−1∑
m=0

r[n−m]e−jω(n+m) (17)

Comparing (16) to (6) we see from (8) that

S1(ω) = S(ω) ? WB(ω) (18)

On the other hand, we have

S2(ω) =
1

N

N−1∑
n=0

N−1∑
m=0

r[n−m]e−jω(n+m) (19)

3The Gaussian assumption is important. That of being real simplifies the notation.
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=
1

N

N−1∑
k=−(N−1)

N−1−|k|∑
m=|k|

r[k]e−jω(k+2m) (20)

=

 1

N

−1∑
k=−(N−1)

r[k]e−jωk

 N−1∑
m=−k

e−jω2m


+

(
1

N

N−1∑
k=0

r[k]e−jωk
(
N−1−k∑
m=0

e−jω2m

))
(21)

(22)

As N → ∞ the inner sums do not converge but are bounded – the bound
does not grow with N – say, bounded in magnitude by C. We could there-
fore4 write

|S2(ω)| < C

∣∣∣∣∣∣ 1

N

N−1∑
k=−(N−1)

r[k]e−jωk

∣∣∣∣∣∣ (23)

and since the sum converges to the power spectrum, the term S2(ω) is
asymptotically zero. As such

E{(Ŝ(ω))2} = 2 (S(ω) ? WB(ω))2 (24)

Var{Ŝ(ω)} = E{(Ŝ(ω))2} −
(
E{Ŝ(ω)}

)2
(25)

= (S(ω) ? WB(ω))2 (26)

which leaves us the important message that the periodogram is not consistent
– its variance does not decrease to zero as N →∞.

1.3 Rayleigh Resolution Limit

With reference to (8) and (11), two frequencies may appear, after convolu-
tion with WB(ω), as a single spectral “bump”. When this happens we say
that the frequencies are not resolvable in the classical (periodogram-based)
sense. Normally it is assumed such a merging happens when the two fre-
quencies are closer together than the frequency spacing between the peak
and first zero of WB(ω), or 2π

M . We call this the Rayleigh resolution limit.

1.4 Array Signal Processing

Consider a uniform linear array of sensors: microphones, hydrophones, radar
receivers, etc. The uniform spacing is important for what follows here; but

4The argument could be made more precise, since for finite k both the inner sums
converge to δ(ω).

4



planar uniform arrays apply as well with greater complexity of notation.
We require a far-field and monochromatic (single-frequency) source. Far-
field means the wavefronts when they arrive at the sensor are planar (as
opposed to curved). The monochromatic nature is important for the math-
ematics, but in fact one could assume that an FFT operation is occurring
at the sensors, and the operations about to be described can be performed
separately at each frequency and (possibly) combined. The notional setup
is as pictured below.

x0(t)x1(t)x2(t)x3(t)x4(t)x5(t)xN-1(t)

Far-field	sourcel

d

q

N	uniformly-spaced	receivers

The source is oriented at angle θ with respect to “horizontal” of the array –
some people prefer to have θ with respect to broadside, the difference is will
be that cos gets replaced by sin. Now suppose the source emits frequency f
– the wavelength and speed of propagation are related to it as fλ = c. The
signal received at the nth sensor is

xn(t) = A
′
ej2πf(t−nd cos(θ)/c) (27)

where A
′

is a complex amplitude and d is the inter-sensor spacing. If all
sensors sample at the same time, we could write

x[n] = Ae−j2πfnd cos(θ)/c (28)

= Ae−j2πn(
d
λ) cos(θ) (29)

where we no longer need the time index and we’ve absorbed the phase caused
by the sampling time into A. What is remarkable is that the signal now
appears as a (spatial) sinusoid indexed by sensor number as opposed to
time sample, and

κ = 2π

(
d

λ

)
cos(θ) (30)
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is the (spatial) frequency. An immediate consequence of this is that to avoid
aliasing we need to have

2π

(
d

λ

)
cos(θ) < π (31)

d cos(θ) <
λ

2
(32)

and since cos(θ) ≤ 1 this means that we must have

d <
λ

2
(33)

in order to be sure there be no spatial aliasing at all.
Perhaps most interesting is that we see that we can apply our spectral

estimation methods to the array processing problem: once we have the spa-
tial frequency of the “sinusoid” we invert (30) to get the direction of arrival
(DOA). The wrinkle is Rayleigh resolution, for which the limit is

2π

(
d

λ

)
cos(θ + ∆)− 2π

(
d

λ

)
cos(θ) >

2π

M
(34)

or with ∆ small (and M sufficiently large),

∆ >
λ

Md sin(θ)
(35)

approximately. This gives an upper limit on Rayleigh resolution of two
DOA’s (we hope to do better!). One thing that is very noticeable is the
deterioration of resolvability near “endfire” – when θ is close to 0 or π.

2 Nonparametric Spectral Estimation: The Bartlett
and Welch Procedures

Inconsistency would seem to be a “deal-killer” for any estimator. But there
is an easy fix. For data record {x[n]}N−1

n=0 , and assuming that N = LM ,
write

Ŝi(ω) ≡ 1

M

∣∣∣∣∣
M−1∑
n=0

x[n+ iM ]e−jωn
∣∣∣∣∣
2

(36)

for i = 0, , 1, . . . , L− 1 and form the Bartlett spectral estimator as

ŜB(ω) =
1

L

L−1∑
i=0

Si(ω) (37)
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It is easy to see that

Var{ŜB(ω)} ≈ 1

L
(S(ω) ? WB(ω))2 (38)

which indicates5 that the Bartlett periodogram is indeed consistent. The
price paid is that in this case

WB(ω) =

(
1

M

sin(ωM/2)

sin(ω/2)

)2

(39)

where (8) describes the mean of the Bartlett periodogram. Note that (39)
does not change as N increases: the Bartlett periodogram converges, but
converges to a smeared version of the power spectrum,

The Welch method somewhat improves on Bartlett in two ways: by
allowing overlap (and hence better resolution due to a larger M in (39))
and by introducing windowing that can potentially reduce sidelobes (and
hence eliminate interference of distant “loud” tones on quieter ones that the
periodogram may be trying hard to discern). In the Welch approach we no
longer require that LM = N , but continue with M as the length of the
sections and L as the number of sections; call K the number of samples to
jump between sections. We replace (36) by

Ŝi(ω) ≡ 1

M

∣∣∣∣∣
M−1∑
n=0

w[n]x[n+ iK]e−jωn
∣∣∣∣∣
2

(40)

where w[n] is the window used, and the Welch periodogram SW (ω) is formed
from these exactly as SB(ω) is in (37). Now we have

E{Ŝ(ω)} = S(ω) ? W (ω) (41)

where

W (ω) ≡ 1

M

∣∣∣∣∣
M−1∑
n=0

w[n]e−jωn
∣∣∣∣∣
2

(42)

Some careful analysis has shown that some degree of overlap is not too
harmful: with 50% overlap (38) is increased by a factor 9

8 , approximately.

5The approximation is that the limited dependency between M -blocks of data has been
ignored. Statisticians would invoke a “mixing” condition.

7



3 Nonparametric Spectral Estimation: MVDR

This approach, sometimes known as the MVDR (for “minimum-variance
distortionless response” which is nicely descriptive) and sometimes as the
Capon method (which is less so) is an excellent way to “listen” to weak
frequencies (or directions) without fear of interference from other stronger
ones. In fact, the stronger these interferers are, the less problems they cause.
The idea is to form a “filter”

yω[n] = w(ω)Hxn (43)

whose output6 represents what is present at frequency ω: the expected out-
put y[n] should contain what is at frequency ω and as little else as possible,
and the expected output power is the power at that frequency. The MVDR
idea is to select w(ω) such that

w(ω) = arg min
w

{
E{|yω[n]|2}

}
subject to w(ω)Hq(ω) = 1 (44)

where

q(ω) ≡


1

e−jω

e−j2ω

...

e−j(M−1)ω

 (45)

is a sinusoid (vector) at frequency ω. Notionally, then we want to listen
faithfully to frequency ω (the constraint); but we want to minimize all in-
terference (the minimization). If there is a strong frequency component at
frequency ω′ it is reasonable to expect the minimization to place a zero
accordingly:

Wω(z)|z=ejω′ ≡
M−1∑
k=0

wω[k]∗z−k|z=ejω′ = w(ω)Hq(ω′) ≈ 0 (46)

At any rate, we have

E{|yω[n]|2} = w(ω)HRw(ω) (47)

6It is interesting to consider this in light of the interpretation of spectral estimation
applied to array processing: one can actually listen in a particular direction (spatial fre-
quency) by forming these y[n]’s at all (temporal) frequencies and then constructing the
time-series coming from that by in the inverse DFT. The filter to be used to do this will
appear shortly as (50).
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and we solve the minimization via Lagrange multipliers as

Rw(ω) = λq(ω) (48)

Substituting back we have

λ =
1

q(ω)HR−1q(ω)
(49)

which gives us

w(ω) =
R−1q(ω)

q(ω)HR−1q(ω)
(50)

and hence

Ŝmvdr(ω) = E{|y[n]|2} (51)

=
q(ω)HR−1RR−1q(ω)

(q(ω)HR−1q(ω))2
(52)

=
1

q(ω)HR−1q(ω)
(53)

4 Parametric Spectral Estimation: AR Modeling

4.1 The Yule-Walker Approach

This is rather obvious, given what we have seen before. Assume that we have
estimated autocorrelations {r[k]}Mk=0. We solve the augmented Yule-Walker
equations and have thence

Ŝyw(ω) =
PM

|1 +
∑M
k=1 a

∗
ke
−jkω|2

(54)

where PM is the same as σ2
ν as seen before. Levinson-Durbin will simplify

the solution to the YW equations.

4.2 Maximum Entropy Spectral Estimation

It is an interesting fact that the YW spectral estimate is the maximum-
entropy spectral estimator of the spectrum given knowledge of the M auto-
correlations {r[k]}Mk=0. That is, amongst all the (wss) random processes that
have {r[k]}Mk=0 as their first M + 1 values, the M th-order AR model is the
“most random” in the sense of Shannon’s entropy – it is “better” than any
other AR order, or ARMA or MA or sinusoid-plus-noise (etc.) model in this
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sense. This course does not pre-suppose any familiarity with information
theory, so we won’t prove this.

The intuition is that the entropy (disorder) of a wss random process is
related to the variance of the prediction error. Suppose we knew {r[k]}Mk=0,
and our prediction error power was σ2

M . Now instead suppose we know more:
we know {r[k]}Nk=0, where N > M . It is tautologically true that we have
σ2
N ≤ σ2

M , meaning knowing more autocorrelations must help in reducing
entropy. The only situation in which it does not help (i.e., σ2

N = σ2
M for

N > M) is when the process is AR of order M , since in that case the
coefficients used to predict u[n] and multiply {u[n−M−1], u[n−M−2], . . .}
are all zero. Hence the AR process is maximally unpredictable amongst all
wss random processes for which {r[k]}Mk=0 are known.

4.3 Relationship to MVDR

Note that we have

Ŝmvdr(ω) =
1

q(ω)HR−1q(ω)
(55)

Now from our earlier work we know that

R−1 = LHD−1L (56)

where

D =


P0 0 0 . . . 0
0 P1 0 . . . 0
0 0 P2 . . . 0
...

...
...

. . .
...

0 0 0 . . . PM

 (57)

in which Pi is the ith-order prediction error and

L =


1 0 0 . . . 0
a1,1 1 0 . . . 0
a2,2 a2,1 1 . . . 0

...
...

...
. . .

...
aM,M aM,M−1 aM,M−2 . . . 1

 (58)

is a matrix of AR predictors. So we are able to write

Ŝmvdr(ω) =

(
M∑
m=0

1

PmŜyw,m(ω)

)−1

(59)
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where Ŝyw,m(ω) is the mth-order YW spectral estimate. The MVDR spec-
tral estimate is consequently the “parallel resistors”-weighted sum of YW
spectra.

4.4 The Burg Algorithm

The YW spectral estimation approach has two steps: first estimate the corre-
lations, then insert these to YW, presumably efficiently solved via Levinson-
Durbin. The Burg approach begins from an earlier place: it assumes only
that a record of data is available. There is no need to estimate correlations,
Burg estimates the spectrum directly. Now, below is repeated the lattice in-
terpretation of the mth-order forward- and backward-error prediction filters
(PEFs) from the section on linear prediction that we enjoyed earlier.

u[n]

Hf,m-1(z)

Hb,m-1(z)

fm[n]

bm[n]

Gm
*

Gm

z-1

Let us suppose, as in the figure, that we have {fm−1[n]} & {bm−1[n]}; that
is, we are trying to find the mth-order model and have worked from model
order 1, then 2, all the way up to m− 1. The notion is that we choose Γm
to minimize the prediction error.

Let us recall from an earlier section of the course that if we posed

J(w) = σ2
d − 2<{wHp}+ wHRw (60)

then we could write
∇wJ(w) = −2p + 2Rw (61)

which is a nice reference – complex derivatives / gradients are sometimes
hard to remember. We also have

J(w) = σ2
d − 2<{w∗p}+ |w|2R (62)

dJ(w)

dw
= −2p+ 2Rw (63)

when these are particularized to scalars – apologies that this is belabored.
Suppose we want to minimize the mth-order forward prediction error

E{|fm[n]|2} = E{|fm−1[n] + Γ∗bm−1[n− 1]|2} (64)
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We take the gradient and get

0 = ∇Γ

(
E{|fm−1[n] + Γ∗mbm−1[n− 1]|2}

)
(65)

= 2E{bm−1[n− 1]fm−1[n]∗} + 2ΓmE{|bm−1[n− 1]|2} (66)

or we get the minimizing reflection coefficient

Γm =
−E{bm−1[n− 1]fm−1[n]∗}
E{|bm−1[n− 1]|2}

(67)

Now it is also interesting to minimize

E{|bm[n]|2} = E{|bm−1[n− 1] + Γfm−1[n]|2} (68)

We take the gradient and get

0 = ∇Γ

(
E{|bm−1[n− 1] + Γmfm−1[n]|2}

)
(69)

= ∇Γ

(
E{|b∗m−1[n− 1] + Γ∗mfm−1[n]∗|2}

)
(70)

= 2E{bm−1[n− 1]fm−1[n]∗} + 2Γ∗mE{|fm−1[n]|2} (71)

and we now get the minimizing reflection coefficient

Γm =
−E{bm−1[n− 1]fm−1[n]∗}

E{|fm−1[n]|2}
(72)

The symmetry is pleasing between the two; but it is perhaps strange to have
b and f treated differently. So the Burg approach is actually to minimize

E{|fm[n]|2} + E{|bm[n]|2} (73)

and the solution is easily seen to be

Γm =
−2E{bm−1[n− 1]fm−1[n]∗}

E{|bm−1[n− 1]|2}+ E{|fm−1[n]|2}
(74)

The Burg spectral estimate Ŝburg(ω) is the AR spectrum (like (54)) that
uses the Γm’s as its reflection coefficients. Levinson-Durbin offers an easy
way to transform these into AR parameters (the a’s), and PM is directly es-
timable from E{|fm[n]|2, and the expectations necessary to calculate Γm are
estimated from fm−1[n] and bm−1[n]. Burg offers a slick way to build up the
AR model step by step directly from the data. There is some evidence that
the Burg spectrum is more “peaky” than the YW spectrum (i.e., sinusoids
stand out more clearly). This may have to do with the fact that its zeros
have to be inside the unit circle (since mathematically |Γm| ≤ 1) whereas
with estimated r[k]’s this may not be true for the YW estimator7.

7The idea is that zeros that “want” to get arbitrarily close to the unit circle but can’t
“escape” it can do so with Burg; whereas with YW they can escape and become less close
to the unit circle.
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5 Parametric Spectral Estimation: Sinusoids in
White Noise

5.1 Justification of the Sinusoid Model

Let us begin with an arbitrary (Toeplitz) correlation matrix R, and define

R̃ ≡ R − λminI (75)

It is clear that R̃ shares the same eigenvectors as R, while each of its eigen-
values is reduced by λmin. There is at least one zero eigenvalue, and let us
call the associated eigenvector g. We have

0 = gHR̃g (76)

=
M−1∑
m=0

M−1∑
n=0

g[m]∗g[n]r[m− n] (77)

=
M−1∑
m=0

M−1∑
n=0

g[m]∗g[n]
1

2π

∫ π

−π
S̃(ω)ejω(m−n)dω (78)

=
1

2π

∫ π

−π
S̃(ω)

M−1∑
m=0

M−1∑
n=0

g[m]∗g[n]ejω(m−n)dω (79)

=
1

2π

∫ π

−π
S̃(ω)|G(ω)|2dω (80)

We have blithely and obviously defined

g ≡


g[0]
g[1]
g[2]

...
g[M − 1]

 (81)

G(z) ≡
M−1∑
m=0

g[m]z−k (82)

G(ω) ≡
M−1∑
m=0

g[m]e−jωm (83)

S(ω) ≡
∞∑

k=−∞
r[k]e−jωk (84)

S̃(ω) ≡
∞∑

k=−∞
[r[k]− λminδ[k]]e−jωk (85)
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where δ[k] is the unit impulse in the DSP sense. It is important to note that
no claim is made that S(ω) be the actual power spectral density; in fact, it
is only one of the power spectra whose first M autocorrelations match those
of the true random process.

Now from (82) it is seen that G(z) is a polynomial of order M − 1, and
hence it has M − 1 roots (zeros). Some (or all) of these may be on the
unit circle, so (83) can hence be zero for at most M − 1 values. And since
|G(ω)|2 ≥ 0 (80) makes it clear that we have

S̃(ω)|G(ω)|2 = 0 ∀ω (86)

which tells us that S̃(ω) can be non-zero at only those ω’s for which G(ω) =
0. There are only at most M − 1 such ω’s and hence we know that we can
write

S̃(ω) =
M−1∑
n=1

pnδ(ω − ωn) (87)

S(ω) = σ2 +
M−1∑
n=1

pnδ(ω − ωn) (88)

where the pk’s are nonnegative real numbers (some can be zero), and hence

r[k] = σ2δ[k] +
M−1∑
n=1

pne
jωnk (89)

This (89) tells us a remarkable thing: the first M correlations of any wss
random process can be written as the sum of a δ-function and M − 1 com-
plex sinusoids. Put another way – and a bit more notionally – any random
process can be thought of as arising from sinusoids plus white noise. This
is a backdoor proof of the Caratheodory Theorem. Note that none of this
is meant to imply that all power spectra have the form (88); what is shown
is that for any wss random process for which we know the fist M auto-
correlations {r[k]}M−1

k=0 there exists a random process consistent with those
autocorrelations that has form (88). This is perhaps a statement that is par-
allel to that relating to AR processes: there are many wss random processes
that have {r[k]}M−1

k=0 , but amongst them the one with maximum entropy is
the AR process of order M − 1.

We end by proffering

R = σ2I +
M−1∑
n=1

pnq(ωn)q(ωn)H (90)
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in which q(ω) is as in (45), as a general model the correlation matrix of a
wss random process. Note that there is no reason to expect that the ωn’s
are related either to each other or to the “DFT frequencies” – actually, their
values are what need to be sought; and to be general we should allow some
(or all) pn’s to be zero.

5.2 Pisarenko Harmonic Decomposition

The discussion in the previous section tells us that the eigendecomposition
of R is key, and suggests the following prescription.

1. Estimate R.

2. Find the minimum eigenvalue of R: λmin. We know that σ2 in (90) is
λmin.

3. Find the eigenvector g that corresponds to λmin.

4. Find the roots of G(z) (see (90)).

5. Keep those roots that on the unit circle8 and label them zm = ejωm .

6. Solve the Vandermonde system
r[1]
r[2]

...
r[M − 1]

 (91)

=


ejω1 ejω2 . . . ejωM−1

ej2ω1 ej2ω2 . . . ej2ωM−1

...
...

. . .
...

ej(M−1)ω1 ej(M−1)ω2 . . . ej(M−1)ωM−1




p1

p2
...

pM−1


This looks great. And unfortunately it doesn’t work very well. The problem
is in steps (1) & (3): when a correlation matrix is estimated rather than ana-
lytically given, the eigenvector polynomial’s roots are not especially inclined
to be on the unit circle. Notionally, the concern is that essentially all the
estimation hard work is performed by the eigenvector corresponding to the
minimum eigenvalue; and exactly this eigenvalue is by its nature the least
well estimated.

8In any sort of “practice” roots that are close to the unit circle will do.
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5.3 MUSIC

First, this has nothing to do with horns and violins. It stands for multiple
signal classification. Let us work with the ideas from the Pisarenko analysis.
First, let us assume that we have

R = σ2I +
L∑
n=1

pnq(ωn)q(ωn)H (92)

where the only difference from (90) is that in (92) the signal is assumed
to contain L < M − 1 sinusoids. That implies that the multiplicity of the
minimum eigenvalue (i.e., σ2) is M − L > 1. This is useful, since with a
larger “noise-subspace” suggests more accurate estimation of it: Pisarenko
works perfectly well in theory, it’s the practice with estimated R where it
can fail.

Now, note that due to the orthogonality property of the eigenvectors of a
Hermitian matrix we for have all of these “minimal” eigenvectors {gm}Mm=L+1

that
gHmq(ωn) n = 1, 2, . . . , L (93)

This means that the MUSIC spectral estimator

Ŝmusic(ω) =
1∑M

m=L+1 |gHmq(ω)|2
(94)

should have strong peaks at ω = ωn, n = 1, 2, . . . , L. Note that MUSIC is
not really a spectral estimator, in the sense that it does not provide complete
information about the true spectrum S(ω). All it tries to do – and it succeeds
quite nicely – is to show the sinusoidal frequencies as peaks. In the array
processing application these peaks would be DOA’s.

Now, as a practical matter we can form the g’s directly from the esti-
mated autocorrelation matrix R̂. But we could also use the techniques that
we have learned about the SVD, and form

AH =

 ↑ ↑ ↑
u1 u2 . . . uN
↓ ↓ ↓

 (95)

and write
A = UΣVH (96)

and recall that since

R̂ =
1

N
AHA (97)
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we consequently find the eigenvectors of R̂ in the unitary matrix V. It is
often useful to write

V = (Vs Vn) (98)

where these contain eigenvectors respectively from the “signal” and “noise”
subspaces. So we could write

Ŝmusic(ω) =
1

q(ω)HVnVH
n q(ω)

(99)

which is the noise-subspace version of MUSIC. The signal-subspace version
is

Ŝmusic(ω) =
1

M − q(ω)HVsVH
s q(ω)

(100)

Another variant of MUSIC is to write (99) as

Ŝmusic(z) =
1

zHVnVH
n z

(101)

where

z ≡


1
z
z2

...
zM−1

 (102)

If we form

D(z) ≡ |VH
n z|2 (103)

= H(z)H(1/z∗)∗ (104)

then the angles of the roots of H(z) should provide the peaks of Ŝmusic(ω).
This is, not surprisingly, referred to as root-MUSIC.

Finally let us recall

Ŝmvdr(ω) =
1

q(ω)HR−1q(ω)
(105)

Now we can write

R =
L∑

m=1

λmgmgHm + λmin

M∑
m=L+1

gmgHm (106)

Suppose we “enhanced” the signal subspace by a factor κ:

Rκ =
L∑

m=1

κλmgmgHm + λmin

M∑
m=L+1

gmgHm (107)

17



and thence

R−1
κ =

L∑
m=1

1

κλm
gmgHm +

1

λmin

M∑
m=L+1

gmgHm (108)

It is easy to see that

Ŝmusic(ω) = lim
κ→∞

{
λ−1
min

q(ω)HR−1
κ q(ω)

)
(109)

meaning that MUSIC is the essentially same as MVDR with asymptotic
enhancement of the signal subspace.

There is one more note about MUSIC – and it’s an important one. Let
us go right back to (92) and re-write as

R = σ2I +
L∑
n=1

pnq(θn)q(θn)H (110)

where the difference is that these q-vectors are parameterized not by fre-
quency (ω) but in some other way (θ). An example would be that the
observations xn are from a general array of sensors and θn is a represen-
tation of the position (in three dimensions) of the nth source. If we can
write, via physics, the signal that we would expect (in a noise-free situation)
to observe9 at the array elements xn, then R according to (110) is a valid
representation of the correlation matrix. The MUSIC idea works accept-
ably here too: when θ is “swept” along all its possible values10, the MUSIC
peaks should be observed at the θn’s. This is why the “SI” in MUSIC is for
“signal” not “sinusoid” – it’s more general than just sinusoids.

5.4 The Minimum-Norm Method

In the signal-subspace version of MUSIC we recognized that |Vsq(ωn)|2 =
M for any signal-space frequency ωn; and we get a spectral peak by taking
the reciprocal of M − |Vsq(ωn)|2. Minimum-norm attempts to form that
directly by seeking a “filter” a such that

VH
s a = 0 (111)

9This might, for example, be via electromagnetic modeling that accounts for all prop-
agation paths and reflections that would be encountered by a source at θ.

10This may take some doing if θ is multi-dimensional. For example, if θ is two-
dimensional, such as azimuth / range, then the MUSIC “spectrum” is a surface.
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However, VH
s is a “short / fat” matrix, so the solution is underdetermined.

Naturally, then we seek the a with minimum norm – that is the SVD idea.
Let us write (111) in linear-predictor format with

a =

(
1
−w

)
(112)

and likewise partition

Vs =

(
gTs
Gs

)
(113)

Vn =

(
gTn
Gn

)
(114)

which isolates the top rows of the two matrices. We have from (111)

0 = VH
s a (115)

=
(
g∗s GH

s

)( 1
−w

)
(116)

GH
s w = g∗s (117)

GT
s w∗ = gs (118)

We seek to minimize wHw subject to (118). We have

∇
(
wHw − 2λT (GT

s w∗ − gs)
)

= 0 (119)

w = Gsλ (120)

so reinstatement of the constraint gives us

(GT
s G∗s)λ

∗ = gs (121)

(GH
s Gs)λ = g∗s (122)

λ =
(
GH
s Gs

)−1
g∗s (123)

w = Gs

(
GH
s Gs

)−1
g∗s (124)

Let us simplify. We have

I = VH
s Vs (125)

=
(
g∗s GH

s

)( gTs
Gs

)
(126)

GH
s Gs = I − g∗sg

T
s (127)(

GH
s Gs

)−1
= I +

g∗sg
T
s

1− gTs g∗s
(128)
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where (128) follows via the matrix-inversion lemma. We thus substitute
back to (124) to get

w = Gs

(
I +

g∗sg
T
s

1− gTs g∗s

)
g∗s (129)

= Gs
g∗s − (gTs g∗s)g

∗
s + g∗s(g

T
s g∗s)

1− gTs g∗s
(130)

= (1− gTs g∗s)
−1Gsg

∗
s (131)

hence

a =

(
1

−(1− gTs g∗s)
−1Gsg

∗
s

)
(132)

An expression equivalent to (132) is also available in terms of the noise
subspace. Write

I = VVH (133)

= (Vs Vn)

(
VH
s

VH
n

)
(134)

=

(
gTs gTn
Gs Gn

)(
g∗s GH

s

g∗n GH
n

)
(135)

hence we have (136)-(138)

gTs g∗s + gTng∗n = 1 (136)

gTs GH
s + gTnGH

n = 0 (137)

GsG
H
s + GnG

H
n = I (138)

We can therefore write

a =

(
1

(gTng∗n)−1Gng
∗
n

)
(139)

which is an alternative expression for (132). We can write

Ŝmn(ω) =
1

|aHq(ω)|2
(140)

and either (132) or (139) can be used.
An interpretation is as follows. We “enhance” the correlation matrix to

R′ ≡ lim
κ→∞

{
1

κ
Rκ

}
(141)

= VsV
H
s (142)

20



where Rκ is as in (107) – that is, R′ contains only the signal subspace.
We want to find a filter a of the form (112) such that the output power is
zero – then the frequency response is zero at the frequencies contained in
the signal subspace and (140) has (∞) peaks at those frequencies. But the
output power of the minimum-norm filter a is

|R′a|2 = 0 (143)

or
|VH

s a|2 = 0 (144)

or
GH
s w = g∗s (145)

Writing the nth row of (145) and conjugating, we have

M=1∑
m=1

w[m]∗ejωnm = gs[n] (146)

which specifies that |W (ωn)|2 = |gs[n]|2 Now, (145) is underdetermined for
w; hence the “minimum-norm” idea is to minimize wHw. The reason this
is interesting is that

|w|2 =
M−1∑
m=1

|w[m]|2 =
1

2π

∫ π

−π
|W (ω)|2dω (147)

by Parseval. So if we minimize |a|2 = 1 + |w|2 we are actually minimizing
the area under the integral of the magnitude-squared prediction filter, which
– notionally at least – forces the filter to sharpen its focus on sinusoids. This
is as pictured below.

w1 w2 w3

|W(w)|2

(w)
p-p

larger	|w|2

minimized	|w|2

|g1(1)|2

|g3(1)|2

|g2(1)|2
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5.5 ESPRIT

Actually the same person invented both MUSIC and ESPRIT (Professor
Thomas Kailath), hence they have cool names. ESPRIT stands for estimation
of sinusoid parameters by rotational-invariant techniques – whose relevance
is perhaps a little murky, but which does sound quite uplifting. Suppose we
write as usual when looking for sinusoids

x[n] =
L∑
l=1

ble
jωln + w[n] (148)

where w[n] is the usual AWGN. In matrix form we have

xn =


x[n]

x[n− 1]
x[n− 2]

...
x[n−M + 1]

 (149)

=


1 1 . . . 1

e−jω1 e−jω2 . . . e−jωL

e−j2ω1 e−j2ω2 . . . e−j2ωL

...
...

. . .
...

e−j(M−1)ω1 e−j(M−1)ω2 . . . e−j(M−1)ωL




b1
b2
...
bL



+


w[n]

w[n− 1]
w[n− 2]

...
w[n−M + 1]

 (150)

= Sb + wn (151)

where S is M × L. Now suppose we write y[n] = x[n+ 1]. Then we have

yn = SΩ∗b + wn (152)

where

Ω =


e−jω1 0 0 . . . 0

0 e−jω2 0 . . . 0
0 0 e−jω3 . . . 0
...

...
...

. . .
...

0 0 0 . . . e−jωL

 (153)
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Now we have
Rxx = SPSH + σ2I (154)

where11 Rxx ≡ E{xnxHn } and

P = E{bbH} =


P1 0 0 . . . 0
0 P2 0 . . . 0
0 0 P3 . . . 0
...

...
...

. . .
...

0 0 0 . . . PL

 (155)

and Pi ≡ E{|bi|2}. We also have

Rxy = SPΩSH + σ2Γ (156)

where Rxy ≡ E{xnyHn } and

Γ ≡



0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

0 0 0 . . . 1 0


(157)

Define

Cxx ≡ Rxx − σ2I (158)

Cxy ≡ Rxy − σ2Γ (159)

Then solving the generalized eigenvalue equation

(Cxx − λCxy)g = 0 (160)

is tantamount to looking for solutions λ to

SPSH − λSPΩSH = 0 (161)

SP(I − λΩ)SH = 0 (162)

yields the sinusoids {ejωl} directly as the solutions λ. The solution to (160)
is sometimes known as a matrix pencil. We can write (160) as

(CxxC
−1
xy − λI)(Cxyg) = 0 (163)

11The ponderous subscript notation is necessary here.
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or
(CxxC

−1
xy )(Cxyg) = λ(Cxyg) (164)

which is a standard equation for eigenstuff. So λ and Cxyg from (164) solve
(160). There are more-efficient solutions, however. And beyond our scope
here is that ESPRIT is actually a total least-squares (TLS) solution.
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