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1 Least Squares Formulation of Wiener Filtering

1.1 The Equations

Let’s suppose we arrange the data into a matrix:
←− uH

1 −→
←− uH

2 −→
...

←− uH
2 −→




w[1]
w[2]

...
w[M ]

 ≡ Aw = y∗ ≡


y[1]∗

y[2]∗

...
y[N ]∗

 (1)

The Wiener goal is actually the least-squares goal: choose w to minimize
the error

J(w) ≡ ||y − d||2 =
N∑

n=1

|e[n]|2 =
N∑

n=1

|d[n]− y[n]|2 (2)

A lot depends on whether the matrix A is short and fat or tall and skinny.
In the short / fat case the linear system (1) is underdetermined, meaning
there are more variables in w than there are equations to match y to d.That
means that we can make J(w) = 0 with multiple w’s – which one should we
choose? In the tall / skinny case (1) is likewise overdetermined, meaning
that in any nontrivial case we cannot find w such that J(w) = 0 – and
in that case it makes sense to find the minimizing w. The situations are
illustrated below.

A

w

=
yN

M
A

w
=

yN

M

Tall	(overdetermined)

Fat	(underdetermined)
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If N = M and there is no triviality (linear dependence in columns of A)
then we have a unique solution – this is the least interesting case and we
will ignore it from now on.

1.2 The Overdetermined Case

Presumably this is familiar. To minimize (2) we apply the p.o.o. and see
that optimally

AH (d−Aw) = 0 (3)

or
w = (AHA)−1AHd (4)

unless (AHA) is singular. We could write

AHA =

 ↑ ↑ ↑
u1 u2 . . . uN

↓ ↓ ↓



←− uH

1 −→
←− uH

2 −→
...

←− uH
2 −→

 (5)

=
N∑

n=1

uuH (6)

= NR̂ (7)

where the last equation assumes that the covariance matrix R is estimated
by simple averaging. In a similar way we could write

AHd =

 ↑ ↑ ↑
u1 u2 . . . uN

↓ ↓ ↓




d[1]∗

d[2]∗

...
d[N ]∗

 (8)

=
N∑

n=1

ud[n]∗ (9)

= N p̂ (10)

where again the last equation assumes that the cross-correlation vector p is
estimated by simple averaging. Written in this way we have optimally

w = (AHA)−1AHd = (NR̂)−1(N p̂) = R̂−1p̂ (11)

meaning that the solution we get by direct dumb least-squares is identical
to the Wiener solution with block averaging estimates for the covariances.
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2 The Singular Value Decomposition

2.1 Relationship to Eigendecompositions

Let us assume a matrix A whose dimension is N (rows) by M (columns):
N ×M . Unless M = N we have no eigendecomposition. But suppose we
form left and right products (which are square and of respective dimensions
M ×M and N ×N . Now eigenstuff is available:

(AHA)V = VΓ (12)

(AAH)U = UΛ (13)

where V is unitary (means: VHV = I) and of dimension M × M ; and
likewise U too is unitary (UHU = I) and of dimension N×N . The matrices
Γ and Λ are diagonal with nonnegative elements. Since the rank of A is
min{M,N} this is also the rank of (AHA) and (AA)H . Hence in the short
/ fat case N < M there are1 M −N zeros on the diagonal of Γ; and likewise
in the tall / skinny case N > M there are N −M zeros on the diagonal of
Λ.

What is interesting is to form the identity

UHAAHAV = UHAAHAV (14)

ΛUHAV = UHAVΓ (15)

where to get (15) we’ve substituted (13) on the LHS and (12) on the RHS.
The situation is as illustrated below.

LMxM

=N

N

0Mx(N-M)

0(N-M)xM 0(N-M)x(N-M)

SMxM

0(N-M)xM

M

UHAV

GMxM MSMxM

0(N-M)xM

M

UHAV

M

1There could be more zeros if A is rank-deficient, meaning that some un’s are linearly
dependent; but this is a trivial case and would be dilatory to explore.

3



In the above figure we’ve assumed for concreteness that N > M ; there is no
loss of generality in doing that in this section. Note that we have inserted
the fact that the last N −M rows of UHAV have to be zero: the LHS tells
us that it must be so. We’ve also (slightly) changed notation to denote only
the northwest M ×M block of the premultiplying matrix on the LHS to be
Λ. Now, we can also write

ΛΣ = ΣΓ (16)

and which implies that Σ is the (unnormalized) matrix of eigenvectors of Λ
(or Γ). Since Λ is a diagonal matrix we know that its eigenvectors are the
Cartesian basis vectors: that is, Σ itself has to be diagonal.

And that’s what we wanted to show. Now we know that we have

UHAV =

(
Σ
0

)
(17)

A = U

(
Σ
0

)
VH (18)

in the case that N > M and

UHAV =
(

Σ 0
)

(19)

A = U
(

Σ 0
)

VH (20)

in the case N < M . Equations (18) and (20) represent the singular value
decomposition (SVD) of the matrix A: the product of a unitary N × N
matrix, a diagonal matrix of dimension N ×M and another M ×M unitary
matrix. It’s quite general. As will be seen very shortly the matrices can
be computed via appropriate eigendecompositions; but there are ways to
compute them directly that are far more efficient, especially if N � M or
N �M . The SVD is a primary tool in many signal processing tasks; we will
soon see an example in the adaptive filtering venue, and then more helping
us with spectral estimation.

Again for the case N > M we can also explore

AAH = U

(
Σ
0

)
VHV

(
Σ 0

)
UH (21)

= U

(
Σ2 0
0 0

)
UH (22)

and

AHA = V
(

Σ 0
)

UHU

(
Σ
0

)
VH (23)
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= VΣ2VH (24)

meaning that Σ2 contains the eigenvalues of (AAH) (or (AHA)). For the
case N < M we have

AAH = U
(

Σ 0
)

VHV

(
Σ
0

)
UH (25)

= UΣ2UH (26)

and

AHA = V

(
Σ
0

)
UHU

(
Σ 0

)
VH (27)

= V

(
Σ2 0
0 0

)
VH (28)

which are the same as (22) and (24), just reversed due to the matrix size.

2.2 The Pseudo-Inverse

The pseudo-inverse, or Moore-Penrose inverse, is defined as

A† ≡ V
(

Σ−1 0
)

UH (29)

if N > M or

A† ≡ V

(
Σ−1

0

)
UH (30)

if N < M . If some elements of Σ are zero the modification is obvious; and
if M = N (and A is full rank) it is easy to see that A† = A−1. So what?

Let’s begin with the case N > M . We have

A†A = V
(

Σ−1 0
)

UHU

(
Σ
0

)
VH (31)

= VIVH (32)

= IM×M (33)

Now let’s examine the case N < M . We now have

AA† = U
(

Σ 0
)

VHV

(
Σ−1

0

)
UH (34)

= U
(

Σ 0
)( Σ−1

0

)
UH (35)

= UIUH (36)

= IN×N (37)
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We will use these shortly.

2.3 The SVD and the Overdetermined Case

Here we have N > M , the tall / skinny situation. From (33) we write

w = A†d (38)

= V
(

Σ−1 0
)

UHd (39)

= V
(

Σ−1 0
)( UH

1

UH
2

)
d (40)

= VΣ−1UH
1 d (41)

For what it is worth, we could start with (4) and use the SVD to get

w = (AHA)−1AHd (42)

=

[
V
(

Σ 0
)

UHU

(
Σ
0

)
VH

]−1
V
(

Σ 0
)

UHd (43)

= V
(

Σ−1 0
)

UHd (44)

= A†d (45)

= V
(

Σ−1 0
)( UH

1

UH
2

)
d (46)

= VΣ−1UH
1 d (47)

The message: The SVD solves the overdetermined case.

2.4 The SVD and the Underdetermined Case

In the overdetermined case there is no solution to (1), so we found the
solution to minimize the error2. In the underdetermined (short / fat A)
case there is a whole subspace of w’s that solves (1) – which one should we
choose? Unless there are other concerns, a good choice might be to select
the w with minimum length. So we have the optimization problem

Minimize wHw subject to Aw = d (48)

We use Lagrange multipliers, and find

w −AHλ = 0 (49)

2. . . or the residuals.
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at optimality. Substituting for the constraint we have

AAHλ = d (50)

λ = (AAH)−1d (51)

hence
w = AH(AAH)−1d (52)

Note that the matrix can be assumed in nontrivial cases to be nonsingular
since N < M . Let us substitute for the SVD.

w = AH(AAH)−1d (53)

= V

(
Σ
0

)
UH

[
U
(

Σ 0
)

VHV

(
Σ
0

)
UH

]−1
d (54)

= V

(
Σ
0

)
UH

[
UΣ2UH

]−1
d (55)

= V

(
Σ−1

0

)
UHd (56)

= A†d (57)

=

(
V1

V2

)(
Σ−1

0

)
UHd (58)

= V1Σ
−1UHd (59)

The message is the same: use the SVD.

2.5 Summary: Applying the Pseudo-Inverse

From (45) and (57) it is clear that the SVD – specifically the pseudo-inverse
– can be used to solve both the overdetermined and underdetermined cases:
It is always a safe choice. Perhaps more important3, even if the rows of a
short / fat A or the columns of a tall / skinny A are linearly dependent, the
pseudo-inverse works fine. The only significant difference is that some of the
elements of Σ are zero, and when the pseudo-inverse is formed these remain
zero when Σ−1 is formed. Note that (47) and (59) are not mathematically
necessary to include, but computationally they can save effort.

3We haven’t shown this here because it is messy and irritating, but it it trivial to do.
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3 The Normalized LMS Adaptive Filter

This is a nice twist on the LMS that uses the theory we’ve learnt about the
SVD. Suppose we want to make a change in wn → wn+1 such that

wH
n+1un = d[n] (60)

meaning that the filter error would have been zero if the filter had been
clairvoyant enough to see un+1 before it happened. To some extent this
seems like making a “rear-view mirror” change. However, the intuition seems
solid: it would appear that the filter is moving in the right direction by such
a move. Now the concern is that (60) is too easy: wn+1 is a vector with M
elements, and we are offering only a rank-one constraint by(60).

Let us define
δn+1 ≡ wn+1 − wn (61)

Inserting this to (60) gives us

(δn+1 + wn)Hun = d[n] (62)

or

δHn+1un = e[n] (63)

uH
n δn+1 = e[n]∗ (64)

where e[n] is the true (not clairvoyant) filter error. This (63) is really a
restatement of (60), but it allows us to see that this is really an underdeter-
mined system, albeit one that is very underdetermined down to N = 1. If
we were to use the pseudo-inverse to “solve” (63) we would find the solution
that minimizes ||δn+1|| – and this seems like a reasonable thing to do.

Applying the SVD we have according to (64) uH
n taking the role “A”;

N = 1 and M is the length of the filter tap-weight vector. Since U and
V are matrices of eigenvectors (unitary matrices, meaning both orthogonal
and normalized) the SVD is

U = 1 a scalar (65)

Σ =
(
||un|| 0 0 . . . 0

)
a row vector with (M − 1) zeros(66)

V =
(

V1 V2

)
where V1 is a column-vector (67)

V1 =
un

||un||
(68)
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and to be clear: ||x|| ≡
√

xHx defines the norm. Clearly V is M ×M ; but
only the first column is important. Applying the pseudo-inverse, then, we
have from (59)

δn+1 = V1Σ
−1UHe∗ (69)

=
un

||un||2
e[n]∗ (70)

which means

wn+1 = wn +
1

||un||2
une[n]∗ (71)

which for obvious reasons is called the normalized LMS (NLMS) update.
Notice that (71) is very much like the usual LMS filter update, except that
µ is replaced by 1

||un||2 . One can see that the NLMS update is in a sense

more robust than LMS: a large un can force the LMS tap-weight vector
wn+1 to make a large step. If that large un were really just an outlying
sample (something non-Gaussian, say) then it is doubly-harmful to LMS:
both un and e[n] will be large. On the other hand, NLMS de-weights large
un’s, and that is in a practical sense quite appealing. It is also appealing
that there is no need to study convergence to make suggestions for µ, as we
had to do with LMS: the step-size is given. The text devotes much time to
convergence nonetheless, and that is useful if inserted to a real application.

A concern that is raised in the text actually relates to the opposite of
the robustness issues: what happens when un is very small? It is easy to
see that the update then can be large. The proposal is rather a bandage:

wn+1 = wn +

(
µ̃

δ + ||un||2
)

une[n]∗ (72)

The result is a far less beautiful algorithm. But it is probably quite practical.

4 Low-Rank Matrix Approximation

The Frobenius norm for a matrix is a logical extension of the vector L2-norm
to matrices:

||A||2F ≡
N∑

n=1

M∑
m=1

|An,m|2 (73)

meaning that it is the sum of (magnitude-) squares of all the elements. An
equivalent way to express the Frobenius norm is

||A||2F = Tr
(
AHA

)
(74)
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If we apply the SVD of A we get

||A||2F = Tr
(
VΣUHUΣVH

)
(75)

= Tr
(
VΣ2VH

)
(76)

= Tr
(
VHVΣ2

)
(77)

= Tr
(
Σ2
)

(78)

=

min{M,N}∑
i=1

σ2i (A) (79)

that is, the Frobenius norm is the sum of squares of the singular values.
The low-rank approximation problem is to find Âo to minimize

Âo = arg min
Â
{||A− Â||2F } (80)

with the constraint that the rank of Âo is R < min{M,N}. Let us assume
that the the singular values of A have been ordered such that we have

σ21(A) ≥ σ22(A) ≥ . . . ≥ σ2min{M,N}(A) (81)

whence it is relatively easy to see that the solution is

Âo =
R∑
i=1

σi(A)uiv
H
i (82)

where

||A− Âo||2F =

min{M,N}∑
i=R+1

σ2i (A) (83)

That is, just choose Âo to align with the space corresponding to the R
largest singular values of A.

To see this, suppose that R = 1. We have that Â = αbcH where b and
c are unit length. Now write

||A− Â||2F = Tr
(
(A− αbcH)H(A− αbcH)

)
(84)

= Tr
(
AAH

)
− 2<

{
αTr

(
AHbcH

)}
+ |α|2Tr

(
bcHcbH

)
(85)

= Tr
(
AAH

)
− 2<

{
αTr

(
AHbcH

)}
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+ |α|2Tr
(
bHbcHc

)
(86)

= Tr
(
AAH

)
− 2<

{
αTr

(
VΣUHbcH

)}
+ |α|2 (87)

=

min{M,N}∑
i=1

σ2i (A) − 2<
{
αTr

(
cHVΣUHb

)}
+ |α|2 (88)

Neither cHV nor UHb can be larger than unity in magnitude. They are
maximized when c and b are aligned to columns in V and U, respectively.
And the middle term is maximized when aligned to the maximum singular
value, yielding

||A− Â||2F = ||A||2F − σ21(A) (89)

We can continue the process with succeeding rank-one matrices to ascertain
(82) and (83).
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