
ECE 6123
Advanced Signal Processing

Introduction

Peter Willett

Fall 2017

1 Filters

1.1 Standard Filters

These are the standard filter types from DSP class.

IIR (infinite-length impulse response) filter

y[n] =
M−1∑
k=0

b∗kx[n− k]−
N−1∑
k=1

a∗ky[n− k] (1)

H(z) =

∑M−1
k=0 b∗kz

−k

1 +
∑N−1
k=1 a

∗
kz

−k
(2)

FIR (finite-length impulse response) filter.

y[n] =
M−1∑
k=0

b∗kx[n− k] (3)

H(z) =
M−1∑
k=0

b∗kz
−k (4)

Several things are worth mentioning.

• Please note the convention of the complex conjugate on the filter co-
efficients. We will (usually) work with complex arithmetic, and this
turns out to be a convenient representation mostly in terms of the
Hermitian transpose.

• A primary concern with IIR filters is stability. Adaptive filters change
their coefficients, so one needs to be assured that no change will move
the filter to an unstable configuration. In some constrained cases (such

1

as the adaptive notch filter1) this can be done, but in general it is too
difficult. Hence almost all adaptive filters are FIR, and we will deal
with them exclusively.

• These filters are for temporal signal processing, where causality is a
concern. Noncausal signal processing (“smoothing”) is of course a
possibility, as is multidimensional signal processing.

An FIR filter can he written as

y[n] = wHxn (5)

where
xn ≡ (x[n] x[n− 1] x[n− 2] . . . x[n−M + 1])T (6)

represents the input in “shift register” format as a column vector and

w ≡ (w0 w1 w2 . . . wM−1)
T (7)

is a column vector containing the filter coefficients. It is common to use w
for these in the optimal signal processing context as opposed to b as would
be expected from standard DSP (4).

1.2 Adaptation

Filters adapt by small movements that we will investigate soon. That is, we
have

y[n] = wH
n xn (8)

where wn is the filter coefficient vector at time n and

wn = wn−1 + µ(∆w)n (9)

The step size (presumably small) is µ and the direction (∆w)n is a vector
that is a function of input, previous output and some “desired” signal d[n]
that y[n] is being adaptive to match.

Some canonical structures are

System Identification. The adaptive filter tries to match the structure of
some unknown plant. it is assumed the input to the plant is available
and d[n] here is the plant’s output.

1An ANF has transfer function H(z) = 1−2bz−1+z−2

1−2αbz−1+α2z−2 where the b is adapted to
control the notch frequency and α is slightly less than unity.

2

System Inversion. The adaptive filter is placed in series with an unknown
plant, and tries to match the input of that plant. The desired signal
d[n] here is the input delayed by some suitable number of samples to
make the inversion feasible.

Prediction. The desired signal d[n] here is the input signal delayed by
some samples, and the goal is to represent the structure of the random
process x[n].

Interference Cancelation. The system tries to match whatever is “match-
able” in a signal, for example in adaptive noise cancelation.

The last is rather vague, so consider the example

d[n] = s[n] + v1[n] (10)

x[n] = s[n] + v2[n] (11)

It is clear that based on {x[n]} at least some part (i.e. s[n]) of d[n] can be
matched. The noises vi[n] remain.

2 Correlation

2.1 Definitions and Properties

This will be very important. We’ll assume wide-sense stationarity (wss) for
analysis and design and that unless otherwise stated means of zero. We
define

r[m] ≡ E{x[n]x∗[n−m]} (12)

where the convention is important, and we might refer to this as rxx[m] if
there is confusion. It is easy to see that

r[−m] = r∗[m] (13)

As for cross-correlation we define

rxy[m] ≡ E{x[n]y∗[n−m]} (14)

for two random signals x[n] & y[n]. In matrix form we have

R ≡ E{xnxHn−m} (15)

and it is important to stress that R can be so defined whether xn represents
a “vectorized” scalar time process as in (6) or whether it is a vector time

3

process2. Cross-correlation matrices are be defined similarly; we will define
cross-correlation vectors shortly. Note that the (i, j)th element of R is

R(i, j) = E{xn(i)x∗
n(j)} (16)

which is probably obvious, but in the case of a vectorized wss we have
R(i, j) = E{x[n+ 1− i]x∗[n+ 1− j]}.

Here are some properties of the correlation matrix. When the proof is
obvious it is suppressed.

• It is Hermitian: RH = R.

• If x[n] represents a “vectorized” scalar time process as in (6), then the
correlation matrix has a special form

R =


r[0] r[1] r[2] r[3] . . . r[M − 1]
r[−1] r[0] r[1] r[2] . . . r[M − 2]
r[−2] r[−1] r[0] r[1] . . . r[M − 3]

...
...

...
...

. . .
...

r[−(M − 1)] r[−(M − 2)] r[−(M − 3)] r[−(M − 4)] . . . r[0]


(17)

which is called “Toeplitz.” A Toeplitz matrix has constant elements
along all super- and sub-diagonals.

• It is non-negative definite.

wHRw = E{wHxnx
H
n w} = E{|y[n]|2} ≥ 0 (18)

• Define the “backwards” vector

xBn ≡ (x[n−M + 1] x[n−M + 2] x[n−M + 3] . . . x[n])T (19)

Then
RB ≡ E{xBn (xBn−m)∗} = R∗ = RT (20)

Please note that the text is for some reason fond of referring to the random
process under study as u[n], which I think is a little confusing in light of
more typical the unit step nomenclature.

2An example of a vector time process is that the ith element of xn is the measurement
from the ith microphone in an array at time n.

4

2.2 Autoregressive Models

Although we will soon see them again in the context of optimization, we
have enough ammunition now to understand them in terms of models. An
autoregressive (AR) model is a special case of (2) with unity numerator;
that is,

y[n] = x[n]−
N−1∑
k=1

a∗ky[n− k] (21)

y[n] = x[n]− aHyn−1 (22)

H(z) =
σ2x

1 +
∑N−1
k=1 a

∗
kz

−k
(23)

where the input x[n] is assumed to be white (and usually but not necessarily
Gaussian) with power σ2x. Define

r ≡ E{yn−1y[n]∗} (24)

= (r[−1] r[−2] . . . r[−M])T (25)

= (r[1] r[2] . . . r[M])H (26)

Then from (23) we can write

r = E{yn−1y[n]∗} (27)

= E{yn−1(x[n]− aHyn−1])
∗} (28)

= −Ra (29)

in which the only subtlety is that yn−1 and x[n] be independent – the latter
is a “future” input to the AR filter. Repeating the last, we have

Ra = −r (30)

in which (30) represents the celebrated “Yule-Walker” equations. Note that
since all quantities can be estimated from the data {y[n]} (30) provides a
way to estimate an AR process from its realization3.

3 Eigenstuff

3.1 Basic Material

For a general M ×M (square) matrix A the equation

Aq = λq (31)

3The power σ2
x needs to be computed separately. We will address this later.

5

has M solutions in λ, although these may be complex. This is easy to see
as (31) implies that the determinant of (A − λI), which is an M th-order
polynomial in λ and hence has M roots, is zero. It is also easy to re-write
all solutions of (31) as

AQ = QΛ (32)

A = QΛQ−1 (33)

in which

Q ≡

 ↑ ↑ . . . ↑

q1 q2
. . . qM

↓ ↓ . . . ↓

 Λ ≡


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λM

 (34)

are the eigenvectors arranged into a column and a diagonal matrix of eigen-
values. We have not shown that Q−1 in general exists for (33), but that is
not in scope for this course. By convention eigenvectors are scaled to have
unit length.

3.2 Hermitian Matrices

Our matrices will usually be correlation matrices, and these are Hermitian.
We have the following:

Eigenvalues are non-negative and real.

0 ≤ qHi Rqi = qHi (λiqi) = λi|qi|2 (35)

Eigenvectors are orthonormal.

qHi Rqj = qHi Rqj (36)

qHi (λjqj) = (qiλi)
Hqj (37)

λiq
H
i qj = λjq

H
i qj (38)

For this to be true either λi = λj or qHi qj = 0. For distinct eigenvalues
the latter must be true. For N ≤ M repeated eigenvalues there is
a subspace of dimension N (orthogonal to all the eigenvectors with
different eigenvalues) that is an eigen-space: any vector within it has
the eigen-property (31). By convention we take an orthonormal basis
of that eigen-space as the eigenvectors; it doesn’t matter much which
such basis.

6

Diagonalization. The analog to (33) is

R = QΛQH (39)

since Q−1 = QH – see previous property of orthonormality. Actually

R =
M∑
i=1

λiq
H
i qi (40)

is a rather nice way of expressing the same thing.

Matrix trace is sum of eigenvalues and determinant is product. This
comes from (39), but actually applies to any matrix A.

3.3 Relation to Power Spectrum

It’s perhaps not obvious, but there is only one non-trivial situation where the
eigenstuff and DFT have a strong relationship. This is when the correlation
is “circulant” for a Toeplitz matrix, meaning

r[m] = r[M +m] (41)

In the case that the process is real, this means r[m] = r[M −m] as well: the
top row of the Toeplitz matrix is symmetric around its midpoint. Consider

qp =
(
1 ej2pπ/M ej4pπ/M ej6pπ/M . . . ej(M−1)p2π/M

)H
(42)

Then the (m+ 1)st element of the product Rqp is

(Rqp)(m+ 1) =
M−1∑
k=0

r(k −m)e−jkp2π/M (43)

=
m−1∑
k=0

r(k −m)e−jkp2π/M

+
M−1∑
k=m

r(k −m)e−jkp2π/M (44)

=
m−1∑
k=0

r(M + k −m)e−jkp2π/M

+
M−1∑
k=m

r(k −m)e−jkp2π/M (45)

7

=
M−1∑

k=M−m
r(k)e−j(k+m−M)p2π/M

+
M−m−1∑
k=0

r(k)e−j(k+m)p2π/M (46)

= e−jmp2π/M
M−1∑

k=M−m
r(k)e−jkp2π/M

+
M−m−1∑
k=0

r(k)e−jkp2π/M (47)

= e−jmp2π/M
(
M−1∑
k=0

r(k)e−jkp2π/M
)

(48)

= S(p)e−jmp2π/M (49)

which implies that the qp, which is the pth DFT vector, is an eigenvector with
eigenvalue the pth element of the power spectrum. One could go backwards
from (39) and show that the circulant condition must be true if the DFT
relationship holds.

But the DFT and frequency analysis have a fairly strong relationship to
Toeplitz covariance matrices, as we shall see. One example is this:

λi = qHi Rqi (50)

=
M∑
k=1

M∑
l=1

qi(k)∗qi(l)r[k − l] (51)

=
M∑
k=1

M∑
l=1

qi(k)∗qi(l)
1

2π

∫ π

−π
S(ω)ejω(k−l)dω (52)

=
1

2π

∫ π

−π
S(ω)|Qi(ω)|2dω (53)

where

Qi(ω) ≡
M−1∑
k=0

qi(k + 1)e−jωk (54)

is the DFT of the eigenvector. Now since

1

2π

∫ π

−π
|Qi(ω)|2dω =

M∑
k=1

|qi(k)|2 (55)

by Parseval and since this is unity, (53) tells us that

min
ω
{S(ω)} ≤ λi ≤ max

ω
{S(ω)} (56)

8

which is nicer looking than it is useful, unfortunately.
At this point it is probably worth looking at a particular case, that of a

sinusoid in noise. Suppose

x[n] = aejωn + ν[n] (57)

where a and {ν[n]} are complex Gaussian, respectively a random variable
with variance σ2a and a white noise process with power σ2ν . Then with

γω ≡ (1 ejω ej2ω . . . ej(M−1)ω)T (58)

we have
R = σ2aγ(ω)γ(ω)H + σ2νI (59)

The eigenstuff is dominated by one eigenvalue equal to Mσ2a + σ2ν with
eigenvector proportional to γ(ω). The other eigenvectors are orthogonal to
γ(ω) (of course!) and have common eigenvalue σ2ν .

9

ECE 6123
Advanced Signal Processing

Optimal Filtering

Peter Willett

Fall 2017

1 Principle of Orthogonality

1.1 The Principle

Let X be a Hilbert space (a complete vector space with an inner-product
defined) and M⊆ X is a subspace. Then for any x ∈ X

(x−m0,m) = 0 ∀m ∈M (1)

is a necessary and sufficient condition that m0 ∈M minimize ||x−m0||2.
The poo idea is as sketched below.

M

x

m0

x-m0

For us in this course the inner product (x, y) is E{x, y∗}, and hence the norm
||x||2 is E{x2}.

1

1.2 Sufficiency

Let’s try some other m1 ∈M. Then

||x−m1||2 = ||x−m0 +m0 −m1||2 (2)

= ||x−m0||2 + (x−m0,m0 −m1)

+ (m0 −m1, x−m0) + ||m0 −m1||2 (3)

= ||x−m0||2 + ||m0 −m1||2 (4)

≥ ||x−m0||2 (5)

with equality if and only if m1 = m0. The second line follows due to (1) and
the fact that (m0 −m1) ∈M.

1.3 Necessity

Assume that m0 ∈M minimizes ||x−m||2 but that

(x−m0,m) = δ (6)

for some m ∈ M with ||m||2 = 1. Then let’s try m0 + δm instead of m0.
We have

||x− (m0 + δm)||2 = ||x−m0||2 − (x−m0, δm)

− (δm, x−m0) + ||δm||2 (7)

= ||x−m0||2 − δ∗(x−m0,m)

− δ(m,x−m0) + |δ|2 (8)

= ||x−m0||2 − |δ|2 (9)

< ||x−m0||2 (10)

This contradicts that m0 + δm minimizes ||x−m||2, so (6) cannot be true.

1.4 An Application

Suppose we have an observation vector x and we wish to approximate the
vector y by ŷ = Ax so as to minimize ||y − ŷ||2. The the poo tells us

(y − ŷ,x) = 0 (11)

E{(y −AxxH) = 0 (12)

Ryx − ARxx = 0 (13)

A = RyxR
−1
xx (14)

Admittedly there are other ways to solve for this, but the poo is certainly
quick and elegant.

2

2 FIR Weiner Filtering

With the usual desired signal d[n] and data1 vector un we minimize

J(w) = E{||d[n]−wHun||2} (15)

via the poo as

E{((d[n]−wH
o un)un)H} = 0 (16)

wH
o = R−1u p (17)

where

p =


p[0]
p[−1]

...
p[−(M + 1)]

 ≡


E{(d[n]u[n]∗}
E{(d[n]u[n− 1]∗}

...
E{(d[n]u[n− (M − 1)]∗}

 (18)

and Ru has the usual correlation matrix definition. Substituting (17) to
(15) it is easy to see that

J(w) = E{(d[n]−wHun)(d[n]−wHun)∗} (19)

= σ2d − pHw − wHp + wHRuw (20)

J(wo) = σ2d − pHR−1u p (21)

= σ2d − pHwo (22)

= σ2d − wH
o p (23)

From (20) we can write

J(w) = σ2d − pHRuw − wHRup + wHRuw (24)

= σ2d − pHw − wHp + wHRuw (25)

= σ2d − wH
o Ruw − wHRuw + wHRuw

+ wH
o Ruwo − wH

o Ruwo (26)

= J(wo) + (w −wo)
HRu(w −wo) (27)

As indicated in the sketch that follows (for M = 2) this means that the
J(w) is concave – actually quadratic – in w, and has a unique minimum
at the Wiener solution wo. This has implications for the adaptive filtering
that will follow.

1Sorry: unlike me, the author loves u.

3

w0

level	curves	of	w

3 IIR Wiener Filtering

3.1 The Complete-Data Case

Suppose we have (more generality is possible!)

u[n] = s[n] + w1[n] (28)

s[n] = d[n− n0] + w2[n] (29)

where {d[n]} is wss with correlation rdd[m] and wi[n] are noises with cor-
relations rwiwi [m]. For simplicity in this section let’s assume everything is
real. We wish to “filter” using

d̂[n] =
∑
k

w[k]u[n− k] (30)

Then the filtering problem is easily solved by the poo:

E{(d[n]−
∑
k

w[k]u[n− k])u(n−m)} = 0 ∀m (31)

or

rdd[m−n0] =
∑
k

w[k](rdd[m−k]+rw1w1 [m−k]+rw2w2 [m−k] ∀m (32)

4

Using z-transforms we have

z−n0Rdd[z] = W (z)(Rdd[z] + Rw1w1 [z] + Rw2w2 [z]) (33)

or

W (z) =
z−n0Rdd[z]

Rdd[z] + Rw1w1 [z] + Rw2w2 [z]
(34)

=
Rdu[z]

Ruu[z]
(35)

with the obvious definition of these two z-transforms. This is nice, but in
general W (z) will not be realizable, as it will be non-causal: it will have
poles outside the unit circle.

3.2 Causal Wiener Filtering

With the constraint that W (z) be causal we have (30) as

d̂[n] =
∞∑
k=0

w[k]u[n− k] (36)

and (31) now

E{(d[n]−
∑
k

w[k]u[n− k])u(n−m)} = 0 ∀m ≥ 0 (37)

or

rdd[m−n0] =
∑
k

w[k](rdd[m−k] + rw1w1 [m−k] + rw2w2 [m−k] ∀m ≥ 0

(38)
Everything is fine, but since (38) is not true for all m we cannot take a
z-transform and equate the two sides. Fortunately we can write

g[m] = rdd[m−n0]−
∑
k

w[k](rdd[m−k]−rw1w1 [m−k]+rw2w2 [m−k] ∀m

(39)
We don’t especially care what g[m] is.

But we do know two things. First, we can write it as

G(z) = z−n0Rdd[z] − W (z)Ruu[z] (40)

And second: we know that it g[m] = 0 for m ≥ 0 while w[k] = 0 for k < 0.
Now factor

Ruu(z) = [Ruu(z)]+ [Ruu(z)]− (41)

5

where the two parts refer to the positive- and negative-time portions of
ruu[m]. In the case that Ruu(z) is rational this may be accomplished by
grouping all poles and zeros inside the unit circle into [Ruu(z)]+ and all
those outside the unit circle into [Ruu(z)]−; but more generally it requires
taking an inverse z-transform of Ruu(z), separating the left- and right-sided
behavior, then taking z-transforms of the two, separately.

Then we have

G(z)

[Ruu(z)]−︸ ︷︷ ︸
m<0

=
z−n0Rdd[z]

[Ruu(z)]−
− W (z) [Ruu(z)]+︸ ︷︷ ︸

m≥0

(42)

after division. Now since the LHS is the convolution of two left-sided se-
quences it is left-sided – that is, it is zero2 for m ≥ 0. Likewise the second
term on the RHS is the convolution of two right-sided sequences, hence it
is right-sided – that is, it is zero for m < 0. Altogether this gives us a nice
equality:

W (z) =
1

[Ruu(z)]+

[
z−n0Rdd[z]

[Ruu(z)]−

]
+

(43)

or

W (z) =
1

[Ruu(z)]+

[
Rdu[z]

[Ruu(z)]−

]
+

(44)

with the more general notation.
Here is a simple example, rather simpler than what was done in class.

Suppose we have
u[n] = d[n− n0] (45)

and rdd[m] = ρ|m| and ρ ∈ <. Then

Rdd(z) =
1− ρ2

(1 − ρz)(1 − ρz−1)
(46)

Rdu(z) = z−n0Rdd(z) (47)

Then

[Ruu(z)]+ =
1− ρ2

1 − ρz−1
(48)

[Ruu(z)]− =
1

1 − ρz
(49)

2This is indicated by the under-braces.

6

where the apportionment of the constant doesn’t much matter – one could
take the square root and make the terms symmetric. Then

W (z) =
1

[Ruu(z)]+

[
Rdu[z]

[Ruu(z)]−

]
+

(50)

=

(
1− ρz−1

1− ρ2

)[(
z−n0(1− ρ2)

(1 − ρz)(1 − ρz−1)

)(
1 − ρz

1

)]
+

(51)

=

(
1− ρz−1

1− ρ2

)(
z−n0(1− ρ2)

1 − ρz−1

)
(52)

= z−n0 (53)

for the case that n0 ≥ 0. Not surprisingly, then, the optimal Wiener filter
chooses d̂[n] = u[n− n0] for non-negative n0.

The case of n0 < 0 is more interesting, since now a prediction is being
made. In this case we follow from (51) in a different way:[(

z−n0(1− ρ2)
(1 − ρz)(1 − ρz−1)

)(
1 − ρz

1

)]
+

=

[(
z−n0(1− ρ2)

1 − ρz−1

)]
+

(54)

= (1− ρ2)
(∞∑
n=0

ρ−(n+n0)z−n
)

(55)

=
ρ−n0(1− ρ2)

1 − ρz−1
(56)

Now we have
W (z) = ρ−n0 (57)

from (52); or in fact d̂[n] = ρ−n0u[n] for n0 < 0. This too, makes sense: you
are predicting, and the best two-step (say) prediction is ρ2 times the most
recent value.

7

ECE 6123
Advanced Signal Processing

Linear Prediction

Peter Willett

Fall 2017

1 AR Models and Wiener Prediction

1.1 Relationship

Suppose we wish to “predict” u[n] linearly, based on {u[n − 1], u[n −
2], . . . , u[n−M]} via

û[n] = wHun−1 (1)

Then the Wiener filter is straightforward:

Rw = r (2)

where

r ≡ E




u[n− 1]
u[n− 2]

...
u[n−M]

u[n]∗

 =


r[−1]
r[−2]

...
r[−M]

 (3)

Why should we want to make such a prediction when all we need is to wait
a sample to see the real value u[n]? The answer is that if u[n] were what
we wanted we should do just that: wait for it. The reason to pose this as a
prediction problem is that the structure is important and useful.

Equation (2) should look familiar. In fact, to repeat from the first lecture,
we have the autoregressive (AR) model:

u[n] = ν[n]−
M−1∑
k=1

a∗ku[n− k] (4)

u[n] = x[n]− aHun−1 (5)

where the input ν[n] is assumed to be white (and usually but not necessarily
Gaussian) with power σ2ν . In the introduction we found that we could recover
the AR model (i.e., the ak’s) from knowledge of the autocorrelation lags (the
r[m]’s) via

Ra = −r (6)

1

which are the “Yule-Walker” equations. That is: w = −a. And that does
make a good amount of sense: according to (4), using û[n] = wHun−1

eliminates all the “randomness” in u[n] except that from ν[n]; and ν[n]
can’t be removed.

1.2 Augmented Yule-Walker Equations

Some helpful insight provided by the Wiener approach to AR modeling is
from the generic Wiener equation

Jmin = σ2d − wH
o p (7)

In the AR case (2) we write this as

σ2ν = r[0] − wHr (8)

We can concatenate (8) and (2) to get(
r[0] rHM
rM RM

)(
1
−w

)
=

(
PM
0

)
(9)

where we have stressed the dimension of the matrix and vector in the sub-
scripts. It is probably useful to note the full matrix in long form

r[0] r[1] r[2] . . . r[M]
r[−1] r[0] r[1] . . . r[M − 1]

...
...

. . .
...

r[−M] r[−(M − 1)] r[−(M − 2)] . . . r[0]


(

1
−w

)
=

(
PM
0

)

(10)
or

RM+1

(
1
−w

)
=

(
PM
0

)
(11)

to see the naturalness of this concatenation.
Let us re-define1 the AR vector a as

a ≡
(

1
−w

)
=

(
1

aold

)
=


1
a1
a2
...
aM

 (12)

1Sorry, but this has to be done.

2

where aold is as in (2) and (4). Then

RM+1aM =

(
PM
0

)
(13)

is a way to re-write (11). Here the subscript on a denotes the order of the
predictor – it is a vector of length M + 1.

1.3 Backwards Prediction

Suppose we want to “predict” u[n−M] based on {u[n−M + 1], , u[n−m+
2], . . . , u[n − 1, u[n]} (i.e., un). The Wiener solution û[n −M] = gHun is
pretty simple:

Rg = p = E{u[n−M]∗un} =


r[M]

r[M − 1]
...
r[1]

 = rB∗ (14)

and that does indeed mean “backwards and conjugated”. We can concate-
nate this and the Wiener error equation as(

RM rB∗

(rB)T r[0]

)(
−g
1

)
=

(
0

P backwardsM

)
(15)

where P backwardsM is the Wiener error for the backward prediction. Now let’s
write the Wiener solution another way, using û[n −M] = (gB)HuBn , which
is identical in effect to the “normal” ordering. Now we have

E{uB(uB)H}gB = E{uBu[n−M]∗} (16)

R∗gB = r∗ (17)

RgB∗ = r (18)

Compare (18) to (2) and it clear that we can write

gB∗ = w (19)(
gB∗

1

)
= a (20)

P backwardsM = PM (21)

That is: the AR process “looks the same” whether viewed in forward time or
reverse time. That’s a cute point, but the main by-product of this analysis

3

is that we can write(
RM rB∗

r r[0]

)(
−wB∗

1

)
=

(
0
PM

)
(22)

or

RM+1a
B∗
M =

(
0
PM

)
(23)

as an alternate way to write the augmented Yule-Walker equations.

2 The Levinson-Durbin Algorithm

Solution of M + 1 linear equations requires O((M + 1)3) operations. But
the YW equations are special: they actually contain only M + 1 unique
“inputs” {r[0], r[1], . . . , r[M]} whereas the general complexity applies to
(M + 1)2 + (M + 1). Can we exploit this structure? Note that the YW
equations are rather unusual, in that there are M unknowns on the LHS
and one (PM) on the RHS.

Of course the answer is yes: the LD algorithm. We begin by proposing
a structure.

am =

(
am−1

0

)
+ Γm

(
0

aB∗
m−1

)
(24)

where we are noting the order as m rather than the true (or at least we
assume it’s true) model order M , since we will start with m = 0 and work
up to m = M . This will be an inductive development, so we need to show
that the structure replicates. The structure might be suggested by (13) and
(23); but we need to show that it works.

We multiply (24) by RM+1; we want this product to be consistent with
(13). We have

Rm+1am =

(
Rm rB∗

m

(rB)T r[0]

)(
am−1

0

)

+ Γm

(
r[0] rHm
rm Rm

)(
0

aB∗
m−1

)
(25)

=

(
Rmam−1

(rB)Tam−1

)
+ Γm

(
rTma

B∗
m−1

Rma
B∗
m−1

)
(26)

=

 Pm−1

0
∆m−1

 + Γm

 ∆∗
m−1

0
Pm−1

 (27)

4

where
∆m−1 ≡ (rB)Tam−1 (28)

So, how do we make (27) into (13)? Easy: choose

Γ =
−∆m−1

Pm−1
(29)

Once we do that, we have

am =

(
am−1

0

)
+ Γm

(
0

aB∗
m−1

)
(30)

as desired, and
Pm = Pm−1(1− |Γ|2) (31)

The LD algorithm consists of starting with P0 = r[0] & a0 = 1, and iterating
on m: (28), (29), (30) then (31). Notice that the missing RHS of (13) – that
is, Pm – is created as is needed.

3 Other Neat Things

3.1 The Lattice Structure

Consider (4). We can turn this into a “prediction error filter” (actually a
forward PEF) as

u[n] +
m∑
k=1

a∗ku[n− k] = ν[n] (32)

fm[n] = u[n] −
(

m∑
k=1

w∗
ku[n− k]

)
(33)

fm[n] =
m∑
k=0

a∗m,ku[n− k]) (34)

Fm(z) = Hf,m(z)U(z) (35)

where (32) is a restatement of the AR model, the second is (33) is the same
in Wiener filtering notation, where fm[n] denotes the prediction error for the
mth-order predictor, (34) uses the new formulation for am and (35) is the
z-transform of (33). This is basically presented to suggest what is meant by
fm[n] and Hf,m(z). We do the same thing for “backward” prediction errors

5

bm[n] and Hb,m(z). We’ll use

bm[n] = u[n−m] −
(

m∑
k=1

g∗ku[n+ 1− k]

)
(36)

bm[n] = u[n−m] −
(

m∑
k=1

wku[n−m+ k]

)
(37)

bm[n] =
m∑
k=0

am,ku[n−m+ k]) (38)

Bm(z) = Hb,m(z)U(z) (39)

and it should be noted closely that bm[n] refers to the “error” in predicting
u[n−m].

We write

Hf,m(z) =
m∑
k=0

a∗m,kz
−k (40)

=
m−1∑
k=0

a∗m−1,kz
−k + Γ∗

m

m−1∑
k=0

a∗m−1,m−k−1z
−k−1 (41)

= Hf,m−1(z) + Γ∗
mz

−1Hb,m−1(z) (42)

where (40) leads to (41) via (30). We also have

Hb,m(z) =
m∑
k=0

a∗m,m−kz
−k (43)

=
m∑
k=0

a∗m,kz
−(m−k) (44)

= z−m (Hf,m(1/z∗))∗ (45)

Substituting (42) into (45) we have

Hb,m(z) = z−m (Hf,m−1(1/z
∗))∗ + Γ∗

mzz
−m (Hb,m−1(1/z

∗))∗ (46)

= z−1Hb,m−1(z) + Γ∗
mzz

−m
(
zm−1Hb,m−1(1/z

∗)
)

(47)

= Γ∗
mHf,m−1(z)z

−1 + z−1Hb,m−1(z) (48)

Then we have

6

u[n]

Hf,m(z)

Hb,m(z)

fm[n]

bm[n]

being equivalent to

u[n]

Hf,m-1(z)

Hb,m-1(z)

fm[n]

bm[n]

Gm
*

Gm

z-1

and overall we have the nice structure

u[n]

f5[n]

b5[n]

G1
*

G1

G2
*

G2

G3
*

G3

G4
*

G4

G5
*

G5

z-1 z-1 z-1 z-1 z-1

f1[n] f2[n] f3[n] f4[n]

b1[n] b2[n] b3[n] b4[n]

exemplified for a fifth-order PEF.

3.2 Orthogonality

This is pretty simple once you remember that the p.o.o. governs all this
optimal filtering. Let’s assume that i < j and remember that bi[n] is a
linear function of {u[n − i], u[n − i + 1], . . . , u[n]}. By the p.o.o., bj [n] is
orthogonal to {u[n−j+1], u[n−j+2], . . . , u[n]}, and hence it is orthogonal
to its subset {u[n − i + 1], u[n − i + 2], . . . , u[n]}. Case closed: bi[n] and
bj [n] are orthogonal

E{bi[n]bj [n]∗} = 0 (49)

for all i 6= j – and this expectation is by definition Pi for the case i = j.
Now let’s write this out in full:

b0[n] = u[n] (50)

7

b1[n] = u[n− 1] + a1,1u[n] (51)

b2[n] = u[n− 2] + a2,1u[n− 1] + a2,2u[n] (52)

... =
...

bm[n] = u[n−m] + am,1u[n−m+ 1] + . . . am,mu[n] (53)

This can be written as
bn = Lun (54)

where L is a lower triangular matrix containing in the ith row the backwards
PEF. Since orthogonality tells us that the b’s are uncorrelated, we have

D = LRLH (55)

where D is a diagonal matrix with (i, i)th element Pi. We can also write
(55) as

R = L−1DL−H (56)

indicating that the PEF’s and the correspond error powers are actually the
LDU decomposition of the correlation matrix of the data.

3.3 Stability

It’s obvious that the PEFs are stable – they’re FIR. But one reason to create
a PEF structure is to be able to recreate the corresponding AR model. Since
that involves the reciprocal of the PEF, we need to know if the zeros of the
PEF are inside the unit circle. If not the AR model is unstable and trying
to use one would be hopeless.

We repeat (42)

Hf,m(z) = Hf,m−1(z) + Γ∗
mz

−1Hb,m−1(z) (57)

and plug in (45)

Hb,m−1(z) = z−(m−1) (Hf,m−1(1/z
∗))∗ (58)

to get
Hf,m(z) = Hf,m−1(z) + Γ∗

mz
−m (Hf,m−1(1/z

∗))∗ (59)

We convert this to the DTFT (discrete-time Fourier transform) as

Hf,m(ejω) = Hf,m−1(e
jω) + Γ∗

me
−jmωHf,m−1(e

jω)∗ (60)

Since (60) comprises the sum of two complex vectors, the first one of mag-
nitude |Hf,m−1(e

jω)| and the second one, since |Γm| < 1, of magnitude less

8

than |Hf,m−1(e
jω)|, we can see that as ω travels from zero to 2π the total

phase change of Hf,m(ejω) must be the same as of Hf,m−1(e
jω) – the second

term in the sum can have no effect. As such Hf,m(ejω) begins and ends its
phase at the same point ∀m.

We turn now to a generic FIR model

H(z) =
m∏
i=1

(1− ziz−1) (61)

= z−m
m∏
i=1

(z − zi) (62)

H(ejω) = e−jmω
m∏
i=1

(ejω − zi) (63)

It is easy to see that a NASC for all zeros to be inside the unit circle is that
the total phase change as ω travels from zero to 2π must be zero. That is
what we have, hence the FPEF is indeed stable – the FPEF is minimum-
phase. It can be shown that all zero are outside the unit circle for the BPEF
(it is maximum-phase).

9

ECE 6123
Advanced Signal Processing
Adaptive Filtering with LMS

Peter Willett

Fall 2017

1 The Gradient Descent Idea

1.1 Finding the Wiener Filter

Suppose we begin with the Weiner filtering cost function

J(w) = E{|d[n]−wHun} (1)

= σ2d − 2<{wHp}+ wHRw (2)

where the terms are as usual. Suppose further that we wish to achieve this
iteratively, as opposed to in one step as before. One might reasonably: Why
do this when you manifestly can get to the solution in one step? The answer
is that we will attempt to see how this can work when the correlations p
and R are not knows or are changing. But that will come.

The basic idea is to observed that one can reduce the error by moving
in a direction of “steepest-descent” which is

wn = wn−1 − µ∇Jw(wn−1) (3)

where µ is some small step size and of course ∇w represents the gradient
with respect to w.

1.2 Interlude about Complex Gradients

This subsection is eminently skippable. However, it is not perhaps obvious
how to take a gradient of a linear of quadratic form when complex vectors
are involved. The answer.turns out to be: it’s exactly what you think it is.
We begin with (2), and write

w ≡ wr + jwi (4)

p ≡ pr + jpi (5)

R ≡ Rr + jRi (6)

1

where all RHS vectors and matrices are real and clearly the subscript refer
to real and imaginary parts. We have (2) as

J(w) = σ2d − 2wT
r pr − 2wT

i pi + wT
r Rrwr

−wT
r Riwi + wT

i Riwr + wT
i Rrwi (7)

= σ2d − 2wT
r pr − 2wT

i pi + wT
r Rrwr

− 2wT
r Riwi + wT

i Rrwi (8)

= σ2d − 2wT
r pr − 2wT

i pi + wT
r Rrwr

+ 2wT
i Riwr + wT

i Rrwi (9)

Our aim in going from (7) to (8) & (9) is to isolate the real or imaginary
parts as row-vectors in the the inner products, and we have used the fact
that since RH = R we have RT

r = Rr and RT
i = −Ri. We have

∇wrJ(w) = −2pr + 2Rrwr − 2Riwr (10)

∇wiJ(w) = −2pi + 2Riwr + 2Rrwi (11)

via (8) and (9) respectively. We therefore write

∇wJ(w) = ∇wrJ(w) + j∇wiJ(w) (12)

= −2pr + 2Rrwr − 2Riwr

j(−2pi + 2Riwr + 2Rrwi) (13)

= −2(pr + jpi) + 2Rr(wr + jwi)

−2Ri(jwr −wi) (14)

= −2p + 2Rw (15)

This is the answer you might expect and might even know.

2 The LMS Algorithm

Equation (15) might seem to give us the way to update (3). One approach
might be to estimate – say, by a block average – the required correlations
p and R and perform exactly that1. However, This does, however, require
a certain amount of computation overhead in terms of the solution to a set
of linear equations; and the block-average idea is not especially reactive to
changes. A better idea in terms of the latter would be a “forgetting factor”
sort of average. On the surface one is left with the O(M3) computational

1Of course this would beg the question as to why not simply go directly to the Wiener
solution directly via the linear equations.

2

load, but in fact the exponential average is exactly what we shall see when
we discuss the RLS algorithm, and its update will be shown cleverly to be
O(M2). The LMS update is O(M), meaning that quite lengthy filters are
easily in reach.

We need estimators for p and R, and LMS espouses the very simplest:

p̂ = und[n]∗ (16)

R̂ = unu
H
n (17)

Note that both are (by definition) unbiased estimators. We thus have the
LMS update

wn = wn−1 − µ(−und[n]∗ + unu
H
n wn−1) (18)

= wn−1 + µun(d[n]∗ − uH
n wn−1) (19)

= wn−1 + µune[n]∗ (20)

where we have absorbed the constant 2 into the unspecified µ, and of course
we have

d̂[n] = wH
n−1un (21)

as the filter output at time n.

3 LMS Analysis

3.1 Discussion

There are many ways to analyze the LMS algorithm. The way shown in the
text is excellent but complicated. I used to teach it, but in later years I’ve
come to the conclusion that it provides inexact but good answers for very
restrictive assumptions. In short, it is a lot of effort that provides a very
sharp answer that is not especially intuitive, isn’t exact nor applies when
things are not Gaussian2. What we seek is guidance about µ: how large
should it be? Clearly a large µ is a concern in that it may “go unstable”
and throw wn wildly in various directions. A small µ avoids this, and has
the additional benefit that the added “gradient noise” in steady state (due
to continual vacillations in wn) can be reduced. But a filter with a small µ
may take a long time to converge.

2I have seen conference presentations and journal papers that purport to give exact
answers but are quite indigestible, both in development and solution.

3

3.2 Convergence

We begin with

wn = wn−1 − µ(−und[n]∗ + unu
H
n wn−1) (22)

and define εn ≡ wn −R−1p to be the filter error. We have

εn = εn−1 − µ(−und[n]∗ + unu
H
n wn−1) (23)

E{εn} = E{εn−1} − µ(−E{und[n]∗}+ E{unu
H
n wn−1}) (24)

E{εn} = E{εn−1} − µ(−p + E{unu
H
n wn−1}) (25)

We claim that we can write

E{unu
H
n wn−1} = E{unu

H
n }E{wn−1} (26)

and offer the justification that whatever dependence there may be between
un and wn−1 – and in the case that {un} forms an independent sequence
there would be none – it is second-order. That is, the changes in wn−1

arising from recent un’s are small perturbations around the expected value.
As such we claim

E{εn} ≈ E{εn−1} − µ(−p + RE{wn−1}) (27)

= E{εn−1} − µ(−p + R[E{εn−1} −R−1p]) (28)

= E{εn−1} − µRE{εn−1} (29)

= [I − µR] E{εn−1} (30)

Hence a necessary condition for convergence (in the mean, and subject to
our approximation) is that all eigenvalues of I − µR be less than unity in
magnitude; and since all eigenvalues of R are non-negative that means

µ <
2

λmax
(31)

Now, the whole point of LMS is to avoid explicit knowledge of R, much less
of its eigenstructure. So a nice way to assure convergence is to note

Tr(R) =
M∑
i=1

λi (32)

which means
Tr(R) ≥ λmax (33)

4

As such, a reasonable way to assure convergence is to select

µ <
2

Tr(R)
(34)

We can use

µ <
2

Mr[0]
(35)

if the process {un} is a sliding window on a scalar time series. Please note
that this is not the general case at all.

Suggestions about the rate of convergence are also available from (30).
Specifically, the slowest eigenmode of wn to converge will clearly have rate

ρ = max{|1− 2µλmin|, |1− 2µλmax|} (36)

meaning that the error in this mode will converge to zero at rate ρn. Fastest
(min-max) convergence is obtained when µ is selected such that the two are
equal:

1− 2µλmin = −(1− 2µλmax) (37)

or

µ =
1

λmax + λmin
(38)

whereat we would find the slowest rate to be

ρ =
λmax − λmin

λmax + λmin
(39)

Note that we want ρ to be as close to zero as possible for quick convergence.
If λmin = 0 this means that we have no convergence at all; but it is hard to
interpret that fact since for this zero eigenvalue qmin we have necessarily

qH
minun = 0 (40)

In general errors in wn in the subspace coined by the smaller eigenvalues of R
may be large; but they may also have little effect on the filter’s performance.
See the next subsection.

3.3 Steady-State Error

The aim is to approximate the effect of a “jumpy” wn on the error. We need
second moments, and we have to do things indirectly. We have of course

wn = wn−1 + µune[n]∗ (41)

5

We take the variance:

E{|wn|2} = E{|wn−1 + µune[n]∗|2} (42)

= E{|wn−1|2]} + µE{wH
n−1une[n]∗}

+ µE{uH
n wn−1e[n]} + µ2E{uH

n un|e[n]|2} (43)

Now, we make the assumption that the filter is converged (no longer tran-
sient) so we can assume that

E{|wn|2} = E{|wn−1|2} (44)

and both using this in (43) and expanding for e[n] we have

0 = µE{wH
n−1un(d[n]∗ − uH

n wn−1)}
+ µE{(d[n]−wH

n−1un)uH
n wn−1} + µ2E{uH

n un|e[n]|2} (45)

where we’ve also taken advantage of the fact that we can re-order products
of things that are scalar. Now, using our previous assumption that wn−1

and un are independent, we have

0 ≈ µE{wn−1}Hp − E{wH
n−1Rwn−1}

+ µpHE{wn−1} − E{wH
n−1Rwn−1} + µ2E{uH

n un|e[n]|2} (46)

At convergence it is easy to see that

E{wn−1} = pHR−1p (47)

which rewrites (46) as

0 = 2µpHR−1p − 2E{wH
n−1Rwn−1} + µ2E{uH

n un|e[n]|2} (48)

The tricky step here is to remember the p.o.o.: we assume that at conver-
gence E{une[n]} = 0, and hence claim that this implies un and e[n] are
independent. As such (48) becomes

0 ≈ 2µpHR−1p − 2E{wH
n−1Rwn−1} + µ2Tr(R)E{J(wn−1)} (49)

or

E{wH
n−1Rwn−1} = pHR−1p +

1

2
µTr(R)E{J(wn−1)} (50)

where we have used J(wn−1) ≡ |e[n]|2.

6

Now (50) isn’t especially illuminating, but it is useful – remember that
we said this was indirect. So let us examine the steady-state error directly:

E{J(wn−1)} = E{|e[n]|2} (51)

= E{|d[n]−wH
n−1un|2} (52)

≈ σ2d − 2pHR−1p + E{wH
n−1Rwn−1} (53)

= σ2d − pHR−1p +
1

2
µTr(R)E{J(wn−1)} (54)

=
Jmin

1− 1
2µTr(R)

(55)

where Jmin ≡ J(R−1p) = σ2d − pHR−1p is the optimal Wiener filter error.
Note that (53) requires the usual approximation that that wn−1 and un

are independent and (54) results from insertion of (50). It is interesting to
compare (55) to (32): apparently the upper bound on µ causes divergent
steady-state error. It is perhaps not surprising to find that the smaller µ
the better then steady-state performance.

4 Subspace Tracking

The use of the LMS algorithm in a problem that has easily expressible
Wiener terms (d[n], un, etc.) is straightforward. This section discusses an es-
pecially famous LMS application that is both non-standard and confusingly-
named. I find the textbook obscurantist about subspace tracking, hence I’ll
call out my own understanding of it.

Suppose we wish to design an LMS algorithm to minimize

J(w) ≡ 1

2
E{|wHun|2} (56)

subject to a constraint
wHq = 1 (57)

and the factor 1
2 in (56) is irrelevant but will make our lives simpler. There is

no d[n] here and the presence of a constraint is new; let us see what happens.
We will later see this is the MVDR problem in beamforming or spectral
estimation; but here we wish to solve it adaptively, whereas later we will use
block averages. The idea is that we seek a filter w that has minimum output
power subject to the stricture that it “listens” to a frequency (or direction)
q. Put another way, we wish to place nulls (zeros) of the filter where they
can do the most good, but not suppress any desired signal at all. It’s worth

7

mentioning we could replace (57) by

wHA = b (58)

for some b (might be all 1’s) if that we want to “listen” to several directions
or frequencies at the same time. More on that later, for now we’ll stay with
(57).

We adopt a Wiener approach, and pose this as a Lagrange multiplier
optimization:

J(w) =
1

2
wHRw − λ(wHq− 1) (59)

∇J(w) = Rw − λq (60)

Using the LMS idea we have the update

wn = wn−1 − µ∇Jw(wn−1) (61)

= wn−1 − µ∇(Rw − λq) (62)

The LMS idea is to estimate

R̂ = unu
H
n (63)

so we get
wn = wn−1 − µ(unu

H
n wn−1 − λq) (64)

The subspace-tracking idea is to select λ to satisfy (57) at all times n. We
get

(wn−1 − µ(unu
H
n wn−1 − λq))Hq = 1 (65)

(unu
H
n wn−1)

Hq = λ∗qHq (66)

(wH
n−1un)(uH

n q) = λ∗qHq (67)

λ =
qHunu

H
n wn−1

qHq
(68)

where (66) follows because the constraint is assumed satisfied for time n− 1
and (67) because we can re-order products of scalars.

So now (64) becomes

wn = wn−1 − µ(unu
H
n wn−1 − qλ) (69)

= wn−1 − µ(unu
H
n wn−1 − q

qHunu
H
n wn−1

qHq
) (70)

= wn−1 − µ

(
I − qqH

qHq

)
unu

H
n wn−1 (71)

= wn−1 − µPune[n]∗ (72)

8

where the error is all the remaining “noise”

e[n] ≡ wH
n−1un (73)

and we have

P ≡ I − qqH

qHq
(74)

It’s easy to see that P is a projection matrix: Pun removes all the un that
is parallel to q (where according to the constraint you want there to be
no updating) but leaves leaves all the remaining subspace unchanged. The
projection (74) becomes

P ≡ I − A(AHA)−1AH (75)

if (58) is used in place of (57).

9

ECE 6123
Advanced Signal Processing
Adaptive Filtering with RLS

Peter Willett

Fall 2017

We have seen the LMS algorithm, whose update rule is

y[n] = d̂[n] = wH
n−1un (1)

The LMS approach is clearly fortuitous in that its computational load is
O(M) per sample. It suffers in that it can converge – and adapt – slowly to
changing input statistics. At another extreme is the least-squares approach
(perhaps via the SVD) whose update is

w = (AHA)−1AHd = (NR̂)−1(N p̂) = R̂−1p̂ (2)

where the estimates are formed by block-averages of the last input data
(both {ui}ni=n−M+1 and {d[i]}ni=n−M+1). Obviously the LS approach wrings
as much information as available out of a possibly-abbreviated block of data.
It will thus adapt quickly; but in general its computational load is O(M3)
per sample.

It goes like this. Consider

R̂n =
n∑
i=1

λn−iunu
H
n (3)

= λR̂n−1 + unu
H
n (4)

p̂n =
n∑
i=1

λn−iund[n]∗ (5)

= λp̂n−1 + und[n]∗ (6)

where λ is slightly less than unity. This estimator might be called an expo-
nential average or one with a “forgetting-factor” (that is: λ). It’s easy to
see

E{R̂n} =
1

1− λ
R (7)

E{p̂n} =
1

1− λ
p (8)

1

so
R̂−1
n p̂n → R−1p (9)

Now define

Pn ≡ R̂−1
n (10)

=
(
λR̂n−1 + unu

H
n

)−1
(11)

= λ−1R̂−1
n−1 −

λ−2R̂−1
n−1unu

H
n R̂

−1
n−1

1 + λ−1uHn R̂
−1
n−1un

(12)

= λ−1Pn−1 − λ−1knu
H
n Pn−1 (13)

where

kn ≡
λ−1Pn−1un

1 + λ−1uHn Pn−1un
(14)

To go from (11) to (12) we use the matrix-inversion lemma1 which is

(A + BCD)−1 = A−1 − A−1B
(
DA−1B + C−1

)
DA−1 (15)

Continuing from (14) we have

kn
(
1 + λ−1uHn Pn−1un

)
= λ−1Pn−1un (16)

kn = λ−1Pn−1un − λ−1knu
H
n Pn−1un (17)

=
(
λ−1Pn−1 − λ−1knu

H
n Pn−1

)
un (18)

kn = Pnun (19)

where (19) follows from (18) by insertion of (13). Now we have

wn = R̂−1
n p̂n (20)

= Pn (λp̂n−1 + und[n]∗) (21)

= λ
(
λ−1Pn−1 − λ−1knu

H
n Pn−1

)
p̂n−1 + Pnund[n]∗ (22)

= wn−1 − knu
H
n wn−1 + knd[n]∗ (23)

= wn−1 + knα[n]∗ (24)

where
α[n] ≡ d[n] − wH

n−1un (25)

is a twist on the “error” e[n] = d[n]−wH
n un.

1This is also known as the Woodbury formula.

2

The RLS, which is rather clever, iterates according to

1. According to (24): α[n] = d[n] − wH
n−1un.

2. According to (14): kn = λ−1Pn−1un

1+λ−1uH
n Pn−1un

.

3. According to (13): Pn = λ−1Pn−1 − λ−1knu
H
n Pn−1.

4. According to (25): wn = wn−1 + knα[n]∗.

If one is interested in the output, one can also compute y[n] = wH
n un. This

may seem like a silly statement, but in some applications only the filter’s
form may be of interest; and unlike the LMS that requires e[n] for its update,
RLS does not explicitly need e[n], only α[n]. Note that steps #2 and #3
each are O(M2) while steps #1 and #4 need only O(M).

3

ECE 6123
Advanced Signal Processing

Spectral Estimation

Peter Willett

Fall 2017

1 Basics of Spectral Estimation

1.1 Introduction

We are all familiar with the discrete-time Fourier transform (DTFT) and the
discrete Fourier transform (DFT) – the latter being implemented efficiently
via the fast Fourier transform (FFT). The former useful for analyzing deter-
ministic signals; the latter is more practical, and gives a way to understand
the frequency behavior of a signal that is given to you as a time series, one
that may not have an explicit expression that nicely sums to something com-
pact or conversely whose DTF is amenable to integration. But what does it
mean when we take the FFT of a random signal? Here we will explore this;
we will when necessary assume the signal {x[n]}N−1

n=0 is wss, zero mean and
Guassian1.

We begin this section by discussing the periodogram, which is the most
obvious approach to spectral estimation: it has a big problem, which we will
solve later. We continue with a discussion of the meaning of resolution. We
then establish the relationship between spectral estimation and beamforming
– it turns out that much of what we do can be used for array signal processing
provided the source is monochromatic (or can be made to be so by filtering)
and the array is a uniformly-spaced linear array (ULA).

The following sections deal with nonparametric and parametric spec-
tral estimation. As the name implies, non-parametric spectral estimation
makes no assumptions about the nature of the spectrum, and we look at the
Bartlett, Welch and Capon approaches. Parametric methods do make such
an assumption, and the ones we explore here are based on AR models and
on modeling as sinusoids-plus-noise.

1This is only important when we are discussing the periodogram, so explore its consis-
tency. We will assume in that section that x[n] ∈ < for ease of explanation; the complex
case is the same but notationally more difficult

1

1.2 The Periodogram

Recall that the power spectrum of a random process {x[n]} is defined as

S(ω) ≡
∞∑

k=−∞
r[k]e−jωk (1)

where {r[k]} is the (usual) autocorrelation r[k] = E{x[n]x[n − k]∗}. How
about we estimate it from our data {x[n]}N−1

n=0 as

Ŝ(ω) ≡ 1

N

∣∣∣∣∣
N−1∑
n=0

x[n]e−jωn
∣∣∣∣∣
2

(2)

that is, as the DTFT magnitude square and suitably2 scaled? Note that the
periodogram is efficiently computed as

Ŝ(ω)|ω= 2πk
N

=
1

N
|X(k)|2 (3)

where X(k) is the kth DFT (or FFT) output.
We need some statistical analysis of the periodogram. We begin with

the mean:

E{Ŝ(ω)} =
1

N
E
{
N−1∑
n=0

N−1∑
m=0

x[n]x[m]∗e−jω(n−m)

}
(4)

=
1

N

N−1∑
n=0

N−1∑
m=0

r[n−m]e−jω(n−m) (5)

=
1

N

N−1∑
k=−(N−1)

(N − |k|)r[k]e−jωk (6)

= S(ω) ? F
[
1− |k|

N

]
(7)

= S(ω) ? WB(ω) (8)

where WB(ω) is the DTFT of the (triangular) Bartlett window wB[k]:

WB(ω) = F
[
1− |k|

N

]
(9)

= F [wB[k]] (10)

=

(
1

N

sin(ωN/2)

sin(ω/2)

)2

(11)

2We will soon see why the scaling.

2

That is, the expected value of the periodogram is a smoothed version of the
true power spectrum: it gets convolved with the sinc-squared.

Turning now to the variance, we compute the second moment. We need
here to – briefly – assume3 that {x[n]} is real and Gaussian. We use the
fact that for jointly-Gaussian zero-mean random variables we have

E{ABCD} = E{AB}E{CD} + E{AC}E{BD} + E{AD}E{BC} (12)

We get

E{(Ŝ(ω))2}

=
1

N2
E


N−1∑
n=0

N−1∑
m=0

N−1∑
p=0

N−1∑
q=0

x[n]x[m]x[p]x[q]e−jω(n−m+p−q)

 (13)

=
1

N2

N−1∑
n=0

N−1∑
m=0

N−1∑
p=0

N−1∑
q=0

r[n−m]r[p− q]e−jω(n−m+p−q)

+
1

N2

N−1∑
n=0

N−1∑
m=0

N−1∑
p=0

N−1∑
q=0

r[n− q]r[m− p]e−jω(n−m+p−q)

+
1

N2

N−1∑
n=0

N−1∑
m=0

N−1∑
p=0

N−1∑
q=0

r[n− p]r[m− q]e−jω(n−m+p−q) (14)

= 2|S1(ω)|2 + |S2(ω)|2 (15)

where

S1(ω) ≡ 1

N

N−1∑
n=0

N−1∑
m=0

r[n−m]e−jω(n−m) (16)

S2(ω) ≡ 1

N

N−1∑
n=0

N−1∑
m=0

r[n−m]e−jω(n+m) (17)

Comparing (16) to (6) we see from (8) that

S1(ω) = S(ω) ? WB(ω) (18)

On the other hand, we have

S2(ω) =
1

N

N−1∑
n=0

N−1∑
m=0

r[n−m]e−jω(n+m) (19)

3The Gaussian assumption is important. That of being real simplifies the notation.

3

=
1

N

N−1∑
k=−(N−1)

N−1−|k|∑
m=|k|

r[k]e−jω(k+2m) (20)

=

 1

N

−1∑
k=−(N−1)

r[k]e−jωk

 N−1∑
m=−k

e−jω2m


+

(
1

N

N−1∑
k=0

r[k]e−jωk
(
N−1−k∑
m=0

e−jω2m

))
(21)

(22)

As N → ∞ the inner sums do not converge but are bounded – the bound
does not grow with N – say, bounded in magnitude by C. We could there-
fore4 write

|S2(ω)| < C

∣∣∣∣∣∣ 1

N

N−1∑
k=−(N−1)

r[k]e−jωk

∣∣∣∣∣∣ (23)

and since the sum converges to the power spectrum, the term S2(ω) is
asymptotically zero. As such

E{(Ŝ(ω))2} = 2 (S(ω) ? WB(ω))2 (24)

Var{Ŝ(ω)} = E{(Ŝ(ω))2} −
(
E{Ŝ(ω)}

)2
(25)

= (S(ω) ? WB(ω))2 (26)

which leaves us the important message that the periodogram is not consistent
– its variance does not decrease to zero as N →∞.

1.3 Rayleigh Resolution Limit

With reference to (8) and (11), two frequencies may appear, after convolu-
tion with WB(ω), as a single spectral “bump”. When this happens we say
that the frequencies are not resolvable in the classical (periodogram-based)
sense. Normally it is assumed such a merging happens when the two fre-
quencies are closer together than the frequency spacing between the peak
and first zero of WB(ω), or 2π

M . We call this the Rayleigh resolution limit.

1.4 Array Signal Processing

Consider a uniform linear array of sensors: microphones, hydrophones, radar
receivers, etc. The uniform spacing is important for what follows here; but

4The argument could be made more precise, since for finite k both the inner sums
converge to δ(ω).

4

planar uniform arrays apply as well with greater complexity of notation.
We require a far-field and monochromatic (single-frequency) source. Far-
field means the wavefronts when they arrive at the sensor are planar (as
opposed to curved). The monochromatic nature is important for the math-
ematics, but in fact one could assume that an FFT operation is occurring
at the sensors, and the operations about to be described can be performed
separately at each frequency and (possibly) combined. The notional setup
is as pictured below.

x0(t)x1(t)x2(t)x3(t)x4(t)x5(t)xN-1(t)

Far-field	sourcel

d

q

N	uniformly-spaced	receivers

The source is oriented at angle θ with respect to “horizontal” of the array –
some people prefer to have θ with respect to broadside, the difference is will
be that cos gets replaced by sin. Now suppose the source emits frequency f
– the wavelength and speed of propagation are related to it as fλ = c. The
signal received at the nth sensor is

xn(t) = A
′
ej2πf(t−nd cos(θ)/c) (27)

where A
′

is a complex amplitude and d is the inter-sensor spacing. If all
sensors sample at the same time, we could write

x[n] = Ae−j2πfnd cos(θ)/c (28)

= Ae−j2πn(
d
λ) cos(θ) (29)

where we no longer need the time index and we’ve absorbed the phase caused
by the sampling time into A. What is remarkable is that the signal now
appears as a (spatial) sinusoid indexed by sensor number as opposed to
time sample, and

κ = 2π

(
d

λ

)
cos(θ) (30)

5

is the (spatial) frequency. An immediate consequence of this is that to avoid
aliasing we need to have

2π

(
d

λ

)
cos(θ) < π (31)

d cos(θ) <
λ

2
(32)

and since cos(θ) ≤ 1 this means that we must have

d <
λ

2
(33)

in order to be sure there be no spatial aliasing at all.
Perhaps most interesting is that we see that we can apply our spectral

estimation methods to the array processing problem: once we have the spa-
tial frequency of the “sinusoid” we invert (30) to get the direction of arrival
(DOA). The wrinkle is Rayleigh resolution, for which the limit is

2π

(
d

λ

)
cos(θ + ∆)− 2π

(
d

λ

)
cos(θ) >

2π

M
(34)

or with ∆ small (and M sufficiently large),

∆ >
λ

Md sin(θ)
(35)

approximately. This gives an upper limit on Rayleigh resolution of two
DOA’s (we hope to do better!). One thing that is very noticeable is the
deterioration of resolvability near “endfire” – when θ is close to 0 or π.

2 Nonparametric Spectral Estimation: The Bartlett
and Welch Procedures

Inconsistency would seem to be a “deal-killer” for any estimator. But there
is an easy fix. For data record {x[n]}N−1

n=0 , and assuming that N = LM ,
write

Ŝi(ω) ≡ 1

M

∣∣∣∣∣
M−1∑
n=0

x[n+ iM]e−jωn
∣∣∣∣∣
2

(36)

for i = 0, , 1, . . . , L− 1 and form the Bartlett spectral estimator as

ŜB(ω) =
1

L

L−1∑
i=0

Si(ω) (37)

6

It is easy to see that

Var{ŜB(ω)} ≈ 1

L
(S(ω) ? WB(ω))2 (38)

which indicates5 that the Bartlett periodogram is indeed consistent. The
price paid is that in this case

WB(ω) =

(
1

M

sin(ωM/2)

sin(ω/2)

)2

(39)

where (8) describes the mean of the Bartlett periodogram. Note that (39)
does not change as N increases: the Bartlett periodogram converges, but
converges to a smeared version of the power spectrum,

The Welch method somewhat improves on Bartlett in two ways: by
allowing overlap (and hence better resolution due to a larger M in (39))
and by introducing windowing that can potentially reduce sidelobes (and
hence eliminate interference of distant “loud” tones on quieter ones that the
periodogram may be trying hard to discern). In the Welch approach we no
longer require that LM = N , but continue with M as the length of the
sections and L as the number of sections; call K the number of samples to
jump between sections. We replace (36) by

Ŝi(ω) ≡ 1

M

∣∣∣∣∣
M−1∑
n=0

w[n]x[n+ iK]e−jωn
∣∣∣∣∣
2

(40)

where w[n] is the window used, and the Welch periodogram SW (ω) is formed
from these exactly as SB(ω) is in (37). Now we have

E{Ŝ(ω)} = S(ω) ? W (ω) (41)

where

W (ω) ≡ 1

M

∣∣∣∣∣
M−1∑
n=0

w[n]e−jωn
∣∣∣∣∣
2

(42)

Some careful analysis has shown that some degree of overlap is not too
harmful: with 50% overlap (38) is increased by a factor 9

8 , approximately.

5The approximation is that the limited dependency between M -blocks of data has been
ignored. Statisticians would invoke a “mixing” condition.

7

3 Nonparametric Spectral Estimation: MVDR

This approach, sometimes known as the MVDR (for “minimum-variance
distortionless response” which is nicely descriptive) and sometimes as the
Capon method (which is less so) is an excellent way to “listen” to weak
frequencies (or directions) without fear of interference from other stronger
ones. In fact, the stronger these interferers are, the less problems they cause.
The idea is to form a “filter”

yω[n] = w(ω)Hxn (43)

whose output6 represents what is present at frequency ω: the expected out-
put y[n] should contain what is at frequency ω and as little else as possible,
and the expected output power is the power at that frequency. The MVDR
idea is to select w(ω) such that

w(ω) = arg min
w

{
E{|yω[n]|2}

}
subject to w(ω)Hq(ω) = 1 (44)

where

q(ω) ≡


1

e−jω

e−j2ω

...

e−j(M−1)ω

 (45)

is a sinusoid (vector) at frequency ω. Notionally, then we want to listen
faithfully to frequency ω (the constraint); but we want to minimize all in-
terference (the minimization). If there is a strong frequency component at
frequency ω′ it is reasonable to expect the minimization to place a zero
accordingly:

Wω(z)|z=ejω′ ≡
M−1∑
k=0

wω[k]∗z−k|z=ejω′ = w(ω)Hq(ω′) ≈ 0 (46)

At any rate, we have

E{|yω[n]|2} = w(ω)HRw(ω) (47)

6It is interesting to consider this in light of the interpretation of spectral estimation
applied to array processing: one can actually listen in a particular direction (spatial fre-
quency) by forming these y[n]’s at all (temporal) frequencies and then constructing the
time-series coming from that by in the inverse DFT. The filter to be used to do this will
appear shortly as (50).

8

and we solve the minimization via Lagrange multipliers as

Rw(ω) = λq(ω) (48)

Substituting back we have

λ =
1

q(ω)HR−1q(ω)
(49)

which gives us

w(ω) =
R−1q(ω)

q(ω)HR−1q(ω)
(50)

and hence

Ŝmvdr(ω) = E{|y[n]|2} (51)

=
q(ω)HR−1RR−1q(ω)

(q(ω)HR−1q(ω))2
(52)

=
1

q(ω)HR−1q(ω)
(53)

4 Parametric Spectral Estimation: AR Modeling

4.1 The Yule-Walker Approach

This is rather obvious, given what we have seen before. Assume that we have
estimated autocorrelations {r[k]}Mk=0. We solve the augmented Yule-Walker
equations and have thence

Ŝyw(ω) =
PM

|1 +
∑M
k=1 a

∗
ke
−jkω|2

(54)

where PM is the same as σ2
ν as seen before. Levinson-Durbin will simplify

the solution to the YW equations.

4.2 Maximum Entropy Spectral Estimation

It is an interesting fact that the YW spectral estimate is the maximum-
entropy spectral estimator of the spectrum given knowledge of the M auto-
correlations {r[k]}Mk=0. That is, amongst all the (wss) random processes that
have {r[k]}Mk=0 as their first M + 1 values, the M th-order AR model is the
“most random” in the sense of Shannon’s entropy – it is “better” than any
other AR order, or ARMA or MA or sinusoid-plus-noise (etc.) model in this

9

sense. This course does not pre-suppose any familiarity with information
theory, so we won’t prove this.

The intuition is that the entropy (disorder) of a wss random process is
related to the variance of the prediction error. Suppose we knew {r[k]}Mk=0,
and our prediction error power was σ2

M . Now instead suppose we know more:
we know {r[k]}Nk=0, where N > M . It is tautologically true that we have
σ2
N ≤ σ2

M , meaning knowing more autocorrelations must help in reducing
entropy. The only situation in which it does not help (i.e., σ2

N = σ2
M for

N > M) is when the process is AR of order M , since in that case the
coefficients used to predict u[n] and multiply {u[n−M−1], u[n−M−2], . . .}
are all zero. Hence the AR process is maximally unpredictable amongst all
wss random processes for which {r[k]}Mk=0 are known.

4.3 Relationship to MVDR

Note that we have

Ŝmvdr(ω) =
1

q(ω)HR−1q(ω)
(55)

Now from our earlier work we know that

R−1 = LHD−1L (56)

where

D =


P0 0 0 . . . 0
0 P1 0 . . . 0
0 0 P2 . . . 0
...

...
...

. . .
...

0 0 0 . . . PM

 (57)

in which Pi is the ith-order prediction error and

L =


1 0 0 . . . 0
a1,1 1 0 . . . 0
a2,2 a2,1 1 . . . 0

...
...

...
. . .

...
aM,M aM,M−1 aM,M−2 . . . 1

 (58)

is a matrix of AR predictors. So we are able to write

Ŝmvdr(ω) =

(
M∑
m=0

1

PmŜyw,m(ω)

)−1

(59)

10

where Ŝyw,m(ω) is the mth-order YW spectral estimate. The MVDR spec-
tral estimate is consequently the “parallel resistors”-weighted sum of YW
spectra.

4.4 The Burg Algorithm

The YW spectral estimation approach has two steps: first estimate the corre-
lations, then insert these to YW, presumably efficiently solved via Levinson-
Durbin. The Burg approach begins from an earlier place: it assumes only
that a record of data is available. There is no need to estimate correlations,
Burg estimates the spectrum directly. Now, below is repeated the lattice in-
terpretation of the mth-order forward- and backward-error prediction filters
(PEFs) from the section on linear prediction that we enjoyed earlier.

u[n]

Hf,m-1(z)

Hb,m-1(z)

fm[n]

bm[n]

Gm
*

Gm

z-1

Let us suppose, as in the figure, that we have {fm−1[n]} & {bm−1[n]}; that
is, we are trying to find the mth-order model and have worked from model
order 1, then 2, all the way up to m− 1. The notion is that we choose Γm
to minimize the prediction error.

Let us recall from an earlier section of the course that if we posed

J(w) = σ2
d − 2<{wHp}+ wHRw (60)

then we could write
∇wJ(w) = −2p + 2Rw (61)

which is a nice reference – complex derivatives / gradients are sometimes
hard to remember. We also have

J(w) = σ2
d − 2<{w∗p}+ |w|2R (62)

dJ(w)

dw
= −2p+ 2Rw (63)

when these are particularized to scalars – apologies that this is belabored.
Suppose we want to minimize the mth-order forward prediction error

E{|fm[n]|2} = E{|fm−1[n] + Γ∗bm−1[n− 1]|2} (64)

11

We take the gradient and get

0 = ∇Γ

(
E{|fm−1[n] + Γ∗mbm−1[n− 1]|2}

)
(65)

= 2E{bm−1[n− 1]fm−1[n]∗} + 2ΓmE{|bm−1[n− 1]|2} (66)

or we get the minimizing reflection coefficient

Γm =
−E{bm−1[n− 1]fm−1[n]∗}
E{|bm−1[n− 1]|2}

(67)

Now it is also interesting to minimize

E{|bm[n]|2} = E{|bm−1[n− 1] + Γfm−1[n]|2} (68)

We take the gradient and get

0 = ∇Γ

(
E{|bm−1[n− 1] + Γmfm−1[n]|2}

)
(69)

= ∇Γ

(
E{|b∗m−1[n− 1] + Γ∗mfm−1[n]∗|2}

)
(70)

= 2E{bm−1[n− 1]fm−1[n]∗} + 2Γ∗mE{|fm−1[n]|2} (71)

and we now get the minimizing reflection coefficient

Γm =
−E{bm−1[n− 1]fm−1[n]∗}

E{|fm−1[n]|2}
(72)

The symmetry is pleasing between the two; but it is perhaps strange to have
b and f treated differently. So the Burg approach is actually to minimize

E{|fm[n]|2} + E{|bm[n]|2} (73)

and the solution is easily seen to be

Γm =
−2E{bm−1[n− 1]fm−1[n]∗}

E{|bm−1[n− 1]|2}+ E{|fm−1[n]|2}
(74)

The Burg spectral estimate Ŝburg(ω) is the AR spectrum (like (54)) that
uses the Γm’s as its reflection coefficients. Levinson-Durbin offers an easy
way to transform these into AR parameters (the a’s), and PM is directly es-
timable from E{|fm[n]|2, and the expectations necessary to calculate Γm are
estimated from fm−1[n] and bm−1[n]. Burg offers a slick way to build up the
AR model step by step directly from the data. There is some evidence that
the Burg spectrum is more “peaky” than the YW spectrum (i.e., sinusoids
stand out more clearly). This may have to do with the fact that its zeros
have to be inside the unit circle (since mathematically |Γm| ≤ 1) whereas
with estimated r[k]’s this may not be true for the YW estimator7.

7The idea is that zeros that “want” to get arbitrarily close to the unit circle but can’t
“escape” it can do so with Burg; whereas with YW they can escape and become less close
to the unit circle.

12

5 Parametric Spectral Estimation: Sinusoids in
White Noise

5.1 Justification of the Sinusoid Model

Let us begin with an arbitrary (Toeplitz) correlation matrix R, and define

R̃ ≡ R − λminI (75)

It is clear that R̃ shares the same eigenvectors as R, while each of its eigen-
values is reduced by λmin. There is at least one zero eigenvalue, and let us
call the associated eigenvector g. We have

0 = gHR̃g (76)

=
M−1∑
m=0

M−1∑
n=0

g[m]∗g[n]r[m− n] (77)

=
M−1∑
m=0

M−1∑
n=0

g[m]∗g[n]
1

2π

∫ π

−π
S̃(ω)ejω(m−n)dω (78)

=
1

2π

∫ π

−π
S̃(ω)

M−1∑
m=0

M−1∑
n=0

g[m]∗g[n]ejω(m−n)dω (79)

=
1

2π

∫ π

−π
S̃(ω)|G(ω)|2dω (80)

We have blithely and obviously defined

g ≡


g[0]
g[1]
g[2]

...
g[M − 1]

 (81)

G(z) ≡
M−1∑
m=0

g[m]z−k (82)

G(ω) ≡
M−1∑
m=0

g[m]e−jωm (83)

S(ω) ≡
∞∑

k=−∞
r[k]e−jωk (84)

S̃(ω) ≡
∞∑

k=−∞
[r[k]− λminδ[k]]e−jωk (85)

13

where δ[k] is the unit impulse in the DSP sense. It is important to note that
no claim is made that S(ω) be the actual power spectral density; in fact, it
is only one of the power spectra whose first M autocorrelations match those
of the true random process.

Now from (82) it is seen that G(z) is a polynomial of order M − 1, and
hence it has M − 1 roots (zeros). Some (or all) of these may be on the
unit circle, so (83) can hence be zero for at most M − 1 values. And since
|G(ω)|2 ≥ 0 (80) makes it clear that we have

S̃(ω)|G(ω)|2 = 0 ∀ω (86)

which tells us that S̃(ω) can be non-zero at only those ω’s for which G(ω) =
0. There are only at most M − 1 such ω’s and hence we know that we can
write

S̃(ω) =
M−1∑
n=1

pnδ(ω − ωn) (87)

S(ω) = σ2 +
M−1∑
n=1

pnδ(ω − ωn) (88)

where the pk’s are nonnegative real numbers (some can be zero), and hence

r[k] = σ2δ[k] +
M−1∑
n=1

pne
jωnk (89)

This (89) tells us a remarkable thing: the first M correlations of any wss
random process can be written as the sum of a δ-function and M − 1 com-
plex sinusoids. Put another way – and a bit more notionally – any random
process can be thought of as arising from sinusoids plus white noise. This
is a backdoor proof of the Caratheodory Theorem. Note that none of this
is meant to imply that all power spectra have the form (88); what is shown
is that for any wss random process for which we know the fist M auto-
correlations {r[k]}M−1

k=0 there exists a random process consistent with those
autocorrelations that has form (88). This is perhaps a statement that is par-
allel to that relating to AR processes: there are many wss random processes
that have {r[k]}M−1

k=0 , but amongst them the one with maximum entropy is
the AR process of order M − 1.

We end by proffering

R = σ2I +
M−1∑
n=1

pnq(ωn)q(ωn)H (90)

14

in which q(ω) is as in (45), as a general model the correlation matrix of a
wss random process. Note that there is no reason to expect that the ωn’s
are related either to each other or to the “DFT frequencies” – actually, their
values are what need to be sought; and to be general we should allow some
(or all) pn’s to be zero.

5.2 Pisarenko Harmonic Decomposition

The discussion in the previous section tells us that the eigendecomposition
of R is key, and suggests the following prescription.

1. Estimate R.

2. Find the minimum eigenvalue of R: λmin. We know that σ2 in (90) is
λmin.

3. Find the eigenvector g that corresponds to λmin.

4. Find the roots of G(z) (see (90)).

5. Keep those roots that on the unit circle8 and label them zm = ejωm .

6. Solve the Vandermonde system
r[1]
r[2]

...
r[M − 1]

 (91)

=


ejω1 ejω2 . . . ejωM−1

ej2ω1 ej2ω2 . . . ej2ωM−1

...
...

. . .
...

ej(M−1)ω1 ej(M−1)ω2 . . . ej(M−1)ωM−1




p1

p2
...

pM−1


This looks great. And unfortunately it doesn’t work very well. The problem
is in steps (1) & (3): when a correlation matrix is estimated rather than ana-
lytically given, the eigenvector polynomial’s roots are not especially inclined
to be on the unit circle. Notionally, the concern is that essentially all the
estimation hard work is performed by the eigenvector corresponding to the
minimum eigenvalue; and exactly this eigenvalue is by its nature the least
well estimated.

8In any sort of “practice” roots that are close to the unit circle will do.

15

5.3 MUSIC

First, this has nothing to do with horns and violins. It stands for multiple
signal classification. Let us work with the ideas from the Pisarenko analysis.
First, let us assume that we have

R = σ2I +
L∑
n=1

pnq(ωn)q(ωn)H (92)

where the only difference from (90) is that in (92) the signal is assumed
to contain L < M − 1 sinusoids. That implies that the multiplicity of the
minimum eigenvalue (i.e., σ2) is M − L > 1. This is useful, since with a
larger “noise-subspace” suggests more accurate estimation of it: Pisarenko
works perfectly well in theory, it’s the practice with estimated R where it
can fail.

Now, note that due to the orthogonality property of the eigenvectors of a
Hermitian matrix we for have all of these “minimal” eigenvectors {gm}Mm=L+1

that
gHmq(ωn) n = 1, 2, . . . , L (93)

This means that the MUSIC spectral estimator

Ŝmusic(ω) =
1∑M

m=L+1 |gHmq(ω)|2
(94)

should have strong peaks at ω = ωn, n = 1, 2, . . . , L. Note that MUSIC is
not really a spectral estimator, in the sense that it does not provide complete
information about the true spectrum S(ω). All it tries to do – and it succeeds
quite nicely – is to show the sinusoidal frequencies as peaks. In the array
processing application these peaks would be DOA’s.

Now, as a practical matter we can form the g’s directly from the esti-
mated autocorrelation matrix R̂. But we could also use the techniques that
we have learned about the SVD, and form

AH =

 ↑ ↑ ↑
u1 u2 . . . uN
↓ ↓ ↓

 (95)

and write
A = UΣVH (96)

and recall that since

R̂ =
1

N
AHA (97)

16

we consequently find the eigenvectors of R̂ in the unitary matrix V. It is
often useful to write

V = (Vs Vn) (98)

where these contain eigenvectors respectively from the “signal” and “noise”
subspaces. So we could write

Ŝmusic(ω) =
1

q(ω)HVnVH
n q(ω)

(99)

which is the noise-subspace version of MUSIC. The signal-subspace version
is

Ŝmusic(ω) =
1

M − q(ω)HVsVH
s q(ω)

(100)

Another variant of MUSIC is to write (99) as

Ŝmusic(z) =
1

zHVnVH
n z

(101)

where

z ≡


1
z
z2

...
zM−1

 (102)

If we form

D(z) ≡ |VH
n z|2 (103)

= H(z)H(1/z∗)∗ (104)

then the angles of the roots of H(z) should provide the peaks of Ŝmusic(ω).
This is, not surprisingly, referred to as root-MUSIC.

Finally let us recall

Ŝmvdr(ω) =
1

q(ω)HR−1q(ω)
(105)

Now we can write

R =
L∑

m=1

λmgmgHm + λmin

M∑
m=L+1

gmgHm (106)

Suppose we “enhanced” the signal subspace by a factor κ:

Rκ =
L∑

m=1

κλmgmgHm + λmin

M∑
m=L+1

gmgHm (107)

17

and thence

R−1
κ =

L∑
m=1

1

κλm
gmgHm +

1

λmin

M∑
m=L+1

gmgHm (108)

It is easy to see that

Ŝmusic(ω) = lim
κ→∞

{
λ−1
min

q(ω)HR−1
κ q(ω)

)
(109)

meaning that MUSIC is the essentially same as MVDR with asymptotic
enhancement of the signal subspace.

There is one more note about MUSIC – and it’s an important one. Let
us go right back to (92) and re-write as

R = σ2I +
L∑
n=1

pnq(θn)q(θn)H (110)

where the difference is that these q-vectors are parameterized not by fre-
quency (ω) but in some other way (θ). An example would be that the
observations xn are from a general array of sensors and θn is a represen-
tation of the position (in three dimensions) of the nth source. If we can
write, via physics, the signal that we would expect (in a noise-free situation)
to observe9 at the array elements xn, then R according to (110) is a valid
representation of the correlation matrix. The MUSIC idea works accept-
ably here too: when θ is “swept” along all its possible values10, the MUSIC
peaks should be observed at the θn’s. This is why the “SI” in MUSIC is for
“signal” not “sinusoid” – it’s more general than just sinusoids.

5.4 The Minimum-Norm Method

In the signal-subspace version of MUSIC we recognized that |Vsq(ωn)|2 =
M for any signal-space frequency ωn; and we get a spectral peak by taking
the reciprocal of M − |Vsq(ωn)|2. Minimum-norm attempts to form that
directly by seeking a “filter” a such that

VH
s a = 0 (111)

9This might, for example, be via electromagnetic modeling that accounts for all prop-
agation paths and reflections that would be encountered by a source at θ.

10This may take some doing if θ is multi-dimensional. For example, if θ is two-
dimensional, such as azimuth / range, then the MUSIC “spectrum” is a surface.

18

However, VH
s is a “short / fat” matrix, so the solution is underdetermined.

Naturally, then we seek the a with minimum norm – that is the SVD idea.
Let us write (111) in linear-predictor format with

a =

(
1
−w

)
(112)

and likewise partition

Vs =

(
gTs
Gs

)
(113)

Vn =

(
gTn
Gn

)
(114)

which isolates the top rows of the two matrices. We have from (111)

0 = VH
s a (115)

=
(
g∗s GH

s

)(1
−w

)
(116)

GH
s w = g∗s (117)

GT
s w∗ = gs (118)

We seek to minimize wHw subject to (118). We have

∇
(
wHw − 2λT (GT

s w∗ − gs)
)

= 0 (119)

w = Gsλ (120)

so reinstatement of the constraint gives us

(GT
s G∗s)λ

∗ = gs (121)

(GH
s Gs)λ = g∗s (122)

λ =
(
GH
s Gs

)−1
g∗s (123)

w = Gs

(
GH
s Gs

)−1
g∗s (124)

Let us simplify. We have

I = VH
s Vs (125)

=
(
g∗s GH

s

)(gTs
Gs

)
(126)

GH
s Gs = I − g∗sg

T
s (127)(

GH
s Gs

)−1
= I +

g∗sg
T
s

1− gTs g∗s
(128)

19

where (128) follows via the matrix-inversion lemma. We thus substitute
back to (124) to get

w = Gs

(
I +

g∗sg
T
s

1− gTs g∗s

)
g∗s (129)

= Gs
g∗s − (gTs g∗s)g

∗
s + g∗s(g

T
s g∗s)

1− gTs g∗s
(130)

= (1− gTs g∗s)
−1Gsg

∗
s (131)

hence

a =

(
1

−(1− gTs g∗s)
−1Gsg

∗
s

)
(132)

An expression equivalent to (132) is also available in terms of the noise
subspace. Write

I = VVH (133)

= (Vs Vn)

(
VH
s

VH
n

)
(134)

=

(
gTs gTn
Gs Gn

)(
g∗s GH

s

g∗n GH
n

)
(135)

hence we have (136)-(138)

gTs g∗s + gTng∗n = 1 (136)

gTs GH
s + gTnGH

n = 0 (137)

GsG
H
s + GnG

H
n = I (138)

We can therefore write

a =

(
1

(gTng∗n)−1Gng
∗
n

)
(139)

which is an alternative expression for (132). We can write

Ŝmn(ω) =
1

|aHq(ω)|2
(140)

and either (132) or (139) can be used.
An interpretation is as follows. We “enhance” the correlation matrix to

R′ ≡ lim
κ→∞

{
1

κ
Rκ

}
(141)

= VsV
H
s (142)

20

where Rκ is as in (107) – that is, R′ contains only the signal subspace.
We want to find a filter a of the form (112) such that the output power is
zero – then the frequency response is zero at the frequencies contained in
the signal subspace and (140) has (∞) peaks at those frequencies. But the
output power of the minimum-norm filter a is

|R′a|2 = 0 (143)

or
|VH

s a|2 = 0 (144)

or
GH
s w = g∗s (145)

Writing the nth row of (145) and conjugating, we have

M=1∑
m=1

w[m]∗ejωnm = gs[n] (146)

which specifies that |W (ωn)|2 = |gs[n]|2 Now, (145) is underdetermined for
w; hence the “minimum-norm” idea is to minimize wHw. The reason this
is interesting is that

|w|2 =
M−1∑
m=1

|w[m]|2 =
1

2π

∫ π

−π
|W (ω)|2dω (147)

by Parseval. So if we minimize |a|2 = 1 + |w|2 we are actually minimizing
the area under the integral of the magnitude-squared prediction filter, which
– notionally at least – forces the filter to sharpen its focus on sinusoids. This
is as pictured below.

w1 w2 w3

|W(w)|2

(w)
p-p

larger	|w|2

minimized	|w|2

|g1(1)|2

|g3(1)|2

|g2(1)|2

21

5.5 ESPRIT

Actually the same person invented both MUSIC and ESPRIT (Professor
Thomas Kailath), hence they have cool names. ESPRIT stands for estimation
of sinusoid parameters by rotational-invariant techniques – whose relevance
is perhaps a little murky, but which does sound quite uplifting. Suppose we
write as usual when looking for sinusoids

x[n] =
L∑
l=1

ble
jωln + w[n] (148)

where w[n] is the usual AWGN. In matrix form we have

xn =


x[n]

x[n− 1]
x[n− 2]

...
x[n−M + 1]

 (149)

=


1 1 . . . 1

e−jω1 e−jω2 . . . e−jωL

e−j2ω1 e−j2ω2 . . . e−j2ωL

...
...

. . .
...

e−j(M−1)ω1 e−j(M−1)ω2 . . . e−j(M−1)ωL




b1
b2
...
bL



+


w[n]

w[n− 1]
w[n− 2]

...
w[n−M + 1]

 (150)

= Sb + wn (151)

where S is M × L. Now suppose we write y[n] = x[n+ 1]. Then we have

yn = SΩ∗b + wn (152)

where

Ω =


e−jω1 0 0 . . . 0

0 e−jω2 0 . . . 0
0 0 e−jω3 . . . 0
...

...
...

. . .
...

0 0 0 . . . e−jωL

 (153)

22

Now we have
Rxx = SPSH + σ2I (154)

where11 Rxx ≡ E{xnxHn } and

P = E{bbH} =


P1 0 0 . . . 0
0 P2 0 . . . 0
0 0 P3 . . . 0
...

...
...

. . .
...

0 0 0 . . . PL

 (155)

and Pi ≡ E{|bi|2}. We also have

Rxy = SPΩSH + σ2Γ (156)

where Rxy ≡ E{xnyHn } and

Γ ≡



0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

0 0 0 . . . 1 0


(157)

Define

Cxx ≡ Rxx − σ2I (158)

Cxy ≡ Rxy − σ2Γ (159)

Then solving the generalized eigenvalue equation

(Cxx − λCxy)g = 0 (160)

is tantamount to looking for solutions λ to

SPSH − λSPΩSH = 0 (161)

SP(I − λΩ)SH = 0 (162)

yields the sinusoids {ejωl} directly as the solutions λ. The solution to (160)
is sometimes known as a matrix pencil. We can write (160) as

(CxxC
−1
xy − λI)(Cxyg) = 0 (163)

11The ponderous subscript notation is necessary here.

23

or
(CxxC

−1
xy)(Cxyg) = λ(Cxyg) (164)

which is a standard equation for eigenstuff. So λ and Cxyg from (164) solve
(160). There are more-efficient solutions, however. And beyond our scope
here is that ESPRIT is actually a total least-squares (TLS) solution.

24

ECE 6123
Advanced Signal Processing

Model Order Selection

Peter Willett

Fall 2017

1 Background on Hypothesis Testing

Let us begin with the principle of optimal decision-making. it is simple to
show that given a set of simple hypotheses Hi (i ∈ {1, 2, . . . , I}), the optimal
– in the sense of a minimization of the probability of error – decision is to
select

Hj = arg max
Hi
{p(u|Hi)Pr(Hi)} (1)

where u is the observed data and p(·) represents a probability density. A
simple hypothesis is one in which p(u|Hi) has meaning or can be written.
To see this, write

Ωi = {u such that u ∈ Ωi means decide Hi} (2)

Then

P (error) =
I∑
i=1

Pr(u /∈ Ωi|Hi)Pr(Hi) (3)

= 1 −
I∑
i=1

Pr(u ∈ Ωi|Hi)Pr(Hi) (4)

= 1 −
I∑
i=1

∫
Ωi

p(u|Hi)Pr(Hi)du (5)

= 1 −
∫ I∑

i=1

{I(decide Hi)p(u|Hi)Pr(Hi)} du (6)

which is clearly minimized by the rule (1). An example of a simple hypoth-
esis is Hi that {u[n]} is white and Gaussian with mean time series {µi[n]}.

A composite-hypothesis situation, on the other hand, is one in which we
have p(u|θ) and

Hi = {θ ∈ Θi} (7)

1

for some exhaustive set of Θi’s. Note that if there exists any prior probability
measure on θ then this is actually a simple hypothesis test, since we can write

p(u|Hi) =

∫
p(u|θ)p(θ|Hi)dθ (8)

But otherwise the test is composite. The most common testing strategy for
composite testing is to use the generalized likelihood (GL)

max
θ∈Θi
{p(u|θ)} (9)

and in the case of only two hypotheses it would be simpler to express this
as a ratio: the GLR.

To be concrete, suppose you have been given a section of time series
{u[n]}N−1

n=0 . You are asked to fit an AR model to this. What order AR
model? If we maximize (9) the answer is: as large as we can make it. This
is because a second-order model is a special case of.a third-order model, and
hence the maximized likelihood under a third-order assumption can be no
smaller than that under a second-order assumption.

Notionally, there comes a point when increasing the order of the model
amounts to “fitting the noise” – it is not providing better explanation of the
data, it is just able to wiggle more to reduce the deviations. However, how
to deal with unknown model order is not at all straightforward; the reason
is that unless p(θ|Hi) and Pr(Hi) are known, there is no solidly Bayesian
means to test. At any rate, there are two ingredients that we must have –
a maximized likelihood and an appropriate penalty for over-fitting – and we
will attack both in subsequent sections.

2 Maximized Likelihood

2.1 The AR Case

According to the AR model

u[n] = ν[n]−
M−1∑
k=1

a∗ku[n− k] (10)

the best predictor for {u[n]} based on the past is

û[n] =
M−1∑
k=1

a∗ku[n− k] (11)

2

which leaves prediction error {ν[n]} having power σ2
ν – which we usually

call {fm[n]} and Pm for the mth-order model – which according to (10) is a
white time sequence. It’s easy to see that we have

log(p(u)) =
N−1∑
n=0

log(p(u[n]|u[n− 1], . . . , u[0]) (12)

−→
N−1∑
n=0

log(p(u[n]|u[n− 1], . . . , u[n−M]) (13)

=


(
−
∑N−1

n=0
fm[n]2

2Pm
− N

2 log(2πPm)

)
∈ <(

−
∑N−1

n=0
|fm[n]|2
Pm

−N log(πPm)

)
/∈ <

(14)

Presumably this increases with model-order m and decreases with the num-
ber of data N .

2.2 The Eigen-method Case

Suppose we have {un}Nn=1 that are complex Gaussian based on covariance
matrix R. We have

p({un}Nn=1) =
1

|πR|N
e−
∑N

n=1
uHn R−1un (15)

=
1

|πR|N
e−Tr(

∑N

n=1
uHn R−1un) (16)

=
1

|πR|N
e−Tr(R

−1
∑N

n=1
unuHn) (17)

=
1

|πR|N
e−NTr(R

−1R̂) (18)

where of course

R̂ ≡ 1

N

N∑
n=1

unu
H
n (19)

Our goal is to maximize (18) with respect to R. But since this is an eigen-
method, we constrain R̂ to be of reduced rank, say p < M .

Let us begin by assuming that the eigenvalues of R (i.e., {λi}) are fixed
– this means that |R| is also fixed. We write

R̂ =
M∑
i=1

λ̂iv̂iv̂
H
i (20)

3

as the eigendecomposition of the empirical covariance matrix. We then have

Tr(R−1R̂) =
M∑
i=1

λ̂iTr(R
−1v̂iv̂

H
i) (21)

=
M∑
i=1

λ̂iTr(v̂
H
i R−1v̂i) (22)

≥
M∑
i=1

λ̂(i)/λ(i) (23)

where λ̂(1) ≥ λ̂(2) ≥ . . . ≥ λ̂(M) and λ(1) ≥ λ(2) ≥ . . . ≥ λ(M). Equation (23)
follows from the same logic that we applied to minimize the Frobenius norm
of a low-rank approximation to a given matrix; the difference is that there
we minimized the Frobenius norm and hence maximized the trace-term; here
we are minimizing the trace term and hence we match the largest λ̂i with
the smallest λ−1

i – which means the largest λ̂i is paired to the largest λi,
second-largest to second-largest, etc. We thus have

log(p({un}Nn=1)) = N
M∑
i=1

λ̂(i)/λ(i) −
M∑
i=1

N log(πλ(i)) (24)

We take the gradient with respect to {λ(i)}Mi=1 under the constraint that
λ(i) = λ0 for p < i ≤M . Setting it to zero we have

0 = −
Nλ̂(i)

λ2
(i)

+
N

λ(i)
(25)

=⇒ λ(i) = λ̂(i) (26)

for i ∈ {1, p}, and

0 = −N
M∑

i=p+1

λ̂(i)

λ2
0

+ N

(
M − p
λ0

)
(27)

=⇒ λ0 =
1

M − p

M∑
i=p+1

λ̂(i) (28)

for i ∈ {p+ 1,M}. Clearly the maximum

log(p({un}Nn=1))

≤ N

 p∑
i=1

λ̂(i)

λ̂(i)

+

∑M
i=p+1 λ̂(i)

1
M−p

∑M
i=p+1 λ̂(i)


4

− N

 p∑
i=1

log(πλ̂(i)) + (M − p) log

π 1

M − p

M∑
i=p+1

λ̂(i)

 (29)

= −N

p + (M − p) +
M∑
i=1

log(λ̂(i)) − (M − p)
M∑

i=p+1

log

(
λ̂

1
M−p
(i)

)
− N

M log(π) + (M − p) log

 1

M − p

M∑
i=p+1

λ̂(i)

 (30)

= N

(M − p) log


(∏M

i=p+1 λ̂(i)

) 1
M−p

1
M−p

∑M
i=p+1 λ̂(i)

−M log(πe)− log(|R̂|)

 (31)

So, in words: the hard work of the test statistic is done by the ratio of the
geometric to arithmetic means of the eigenvalues in the (empirical) noise
subspace.

2.3 A Little Bit of Random Matrix Theory

RMT is an emerging field for statisticians, with much activity. The results
are not simple to prove, and no effort will be given here to offer proofs.
There are applications in testing and especially in communications. Signal
processors are interested, but are struggling to find applications.

First, please be aware that we are interested (here) in square Hermitian
matrices. There are two such classes. The first is the Wigner class that
involves an M ×M matrix A = AH that is composed of zero-mean complex
Gaussian random variables with 1/M as their variance1. The second is the
Wishart class of random matrices where

R̂ =
1

N

N∑
n=1

unu
H
n (32)

where E{unuHn } = S which is of dimension M ×M . In the Wishart class
we sometimes are interested in asymptotics where

lim
N→∞

{
M

N

}
= γ (33)

shows that there is a scaling between matrix size and estimation accuracy
– it does not apply to a situation of near-convergence to a good estimate of
the covariance matrix.

1Obviously this can be scaled; but all entries must be iid.

5

Wishart Density. It can be shown that the probability density function
(pdf) of R̂ is

p(R̂) =

∣∣∣R̂∣∣∣N−M−1
e−

1
2
Tr(S−1R̂)

2
MN
2 |S|

N
2 ΓM (N2)

(34)

where

ΓM

(
N

2

)
≡ π

M(M−1)
4

M∏
i=1

Γ

(
N

2
− i− 1

2

)
(35)

is the “multi-variate Gamma function” and in which Γ denotes the
usual Gamma function. The pdf (34) is usually written as R̂ ∼
WM (S, N). It is not asymptotic, and applies for any N and M . The
pdf (34) looks fascinating, but I’ll admit that I’ve never seen an ap-
plication of the Wishart pdf.

Semi-Circle Law. This applies to the Wigner case. It says that the marginal
pdf of any eigenvalue has pdf

p(λ) =

√
4− λ2

2π
(36)

This (36) is not precisely the pdf for any finite-size matrix, but can be
shown to be the asymptotic pdf as M →∞.

Marcenko-Pastur Law. This is the analog of (36) for Wishart matrices,
which is probably more useful for us. In this case the result is asymp-
totic: the scaled situation of (33). For the case γ < 1 we have

p(λ) =


√

(b+−λ)(λ−b−)

2πγλ b− ≤ λ ≤ b+
0 else

(37)

in which

b− ≡ (1−√γ)2 (38)

b+ ≡ (1 +
√
γ)2 (39)

For γ > 1 we have

p(λ) =
1

1− γ
δ(λ) +

1

γ


√

(b+−λ)(λ−b−)

2πγλ b− ≤ λ ≤ b+
0 else

(40)

in which

b− ≡ 0 (41)

b+ ≡ (1 +
√
γ)2 (42)

6

This difference – that there are zero eigenvalues – is not so surprising,
in that if γ < 1 it is necessarily that R̂ be singular, since there are
fewer snapshots than dimensions.

There are (many) other interesting RMT results. One example is the Tracy-
Widom theory for the pdf of the largest eigenvalue. Obviously this would
be quite useful when testing for a nontrivial signal subspace from data. It is
not presented since it is quite complex.

2.4 Asymptotic Distribution of the MLE

Under mild but non-trivial regularity conditions the MLE θ̂ can be con-
verges, as the number of samples upon which is computed goes to infinity,
to Gaussian, with mean θ (the true parameter) and covariance J−1

θ ; that is,
we have

p(θ̂) ≈
√∣∣∣∣Jθ2π

∣∣∣∣e− 1
2

(θ̂−θ)TJθ(θ̂−θ) (43)

The latter quantity Jθ is the Fisher information matrix (FIM). Generally
one does not know the true θ so one is content to use Jθ̂ – this is called the
observed information (OI), which has little theoretical backing but it often
useful in situations where Jθ is not independent2 of θ. There is nothing to
be embarrassed about in using the OI instead of the FIM; just be aware that
it is an approximation.

3 Penalty Criteria

If we knew Pr(Hi) and p(θ|Hi) then we would have (1) as

Hj = arg max
Hi

{∫
p(u|Hi, θ)p(θ|i)dθPr(Hi)

}
(44)

and we would be done. We know neither. But we would like some means to
penalize more-complex models, such that we could select

Hj = arg max
Hi

{∫
p(u|Hi, θ)p(θ|i)dθPr(Hi)− κp

}
(45)

2An example of such lack of dependence is the estimation of the mean of Gaussian
data; but such nice behavior is the exception rather than the rule.

7

as the penalty that applies to a model with p free parameters (such3 as
AR(p)). But in fact we need more than this, since some pth-order models
are more attractive than others. It is bests to let the data decide.

There are several “penalty terms” for model order that have some ap-
peal: the Akaike information criterion (AIC), Rissanen’s minimum descrip-
tor length (MDL) and the Bayesian information criterion (BIC) come to
mind. There are others, and it is a field of continual developments. No
penalty term has a really rigorous development; but that is forgivable since
the problem of model order selection (without prior information) is not well-
posed.

3.1 AIC

First, please recall (or be introduced to) the Kullback-Leibler (KL) diver-
gence between to probability measures (densities)

dkl(p, q) ≡
∫
p log

(
p

q

)
(46)

We have dkl = 0 if and only if p = q; otherwise dkl > 0. The KL divergence
has a great deal of importance in information theory, and is of paramount
importance in large deviations theory where it describes convergence expo-
nents. And, indeed, if p(x, y) is a joint distribution and q(x, y) has the same
marginals but is the special case that the two are independent, then dkl(p, q)
is the same as Shannon’s Information. But for our purposes, just be aware
that dkl is a measure of the difference between p and q.

Akaike assumed:

θ0 is the true parameter for the true model, which has dimension (number
of parameters to be estimated) p0.

θ is the expected value of the parameter, of order p, for the model being
tested.

θ̂ is the maximum-likelihood estimate (MLE) of the parameter, of order p,
for the model being tested.

Akaike in 1975 wanted to choose the best model in the sense of minimizing

dkl(pθ0 , pθ) ≡
∫
pθ0 log

(
pθ0
pθ

)
(47)

3In the eigenmethod case, the number of free parameters, in the notation just used,
is pM , corresponding to the requisite eigenvalues and eigenvectors in the signal-subspace.
It is noted that each eigenvector only requires M − 1 parameters due to its unit-length
requirement.

8

which amounts to maximizing∫
pθ0(u) log (pθ(u)) du (48)

where we have defined u ≡ {un}Nn=1. Under the the assumption that θ̂ is
sufficient for θ we have both

pθ(u) = pθ̂(u)pθ(θ̂) (49)

which follows from the factorization theorem for sufficient statistics; and the
asymptotic MLE distribution expression (43). Substituting (49) and (43)
into (48) we propose to maximize∫

pθ0(u)

(
log

(
pθ̂(u)

)
− 1

2
(θ̂ − θ)TJθ(θ̂ − θ) +

1

2
log

(∣∣∣∣Jθ2π

∣∣∣∣)) du (50)

over the model type and order.
The AIC development says that the first term in (50) is the maximized

likelihood. The second term assumes that the covariance is indeed J−1, so
the expectation results in p, the dimension of θ̂. The third term is ignored.
Hence in its raw form the AIC maximizes

arg max
p

{
max
θ∈Θp
{log(p({un}Nn=1))} − p

}
(51)

As can be seen, however, (at least) these problems can be identified:

• The integration in the first term of (50) is ignored.

• It is not clear why J−1 should be the covariance in the second term of
(50) when θ0 is true.

• It is unclear why the third term in (50) can be ignored.

• It is unexplained why the integration in (48) should be over u when
in fact u is known.

There is a “corrected” form of the AIC for finite data sizes – that is, finite
N . It is

arg max
p

{
max
θ∈Θp
{log(p({un}Nn=1))} − Np

N − p

}
(52)

The AIC is probably the first attempt to address the issue of model-order
selection, and should be complimented for that; and in fact it works reason-
ably well for small N . But its development is a Swiss cheese.

9

3.2 MDL

Rissanen originally developed the MDL with an idea from information the-
ory. A nice intuition is from a notional example. Consider we have an
alphabet of 2 letters (OK: here “letters” means bits), N data from this
alphabet, and two coding strategies:

1. Treat all symbols are equally likely. N data can be represented by N
bits.

2. Randomly4 generate 210 symbol-probability choices {{pi,n}32
i=1}1024

n=1 , in
which pi,n is the probability of symbol i under model n, and of course
we must have

∑32
i=1 pi,n = 1. Then for the N data perform a Huffman

coding procedure for each {pi,n}32
i=1. Use the shortest coded symbol

stream, which should be less than N . Since you must also encode the
identity of the code used, the number of coded bits is minn{NL̄n}+10.

Clearly there is more “overhead” needed in the second strategy5; but if
the data fits it better (shorter coded length) by enough compared to the
overhead, then it might be a better strategy. Suppose we used 220 {pi,n}’s
– presumably the best L̄n should be lower than for 210, but is it worth the
extra 10 bits needed to tell the decoder which codebook we used?

As I indicated, RIssanen originally was motivated by the ideas above –
find the best encoding of the data – which is reminiscent both of Kolmogorov
complexity theory and of “universal” source coding. But I find Djuric’s 1998
paper the most appealing way to develop MDL. Djuric starts with (1) and
takes Pr(Hi) uniform (and hence ignorable). He then writes

p(u|Hi) =

∫
p(u|θ,Hi)p(θ|Hi)dθ (53)

and takes p(θ|Hi) uniform as well. Let us put this into a form that we can
use:

p(u|Hi) =

∫
p(θ|Hi)eN

[
1
N

∑N

n=1
log(p(u|θ,Hi))

]
dθ (54)

We have to discuss Laplace’s method of integral approximation now.
Consider

I(t) =

∫
V
f(y)e−tg(y)dy (55)

4For uniformity this would be according to the Dirichlet density and model.
5We are not interested in the overhead to compute the codes, although this may be

considerable; we are only interested in the encoded length.

10

where g(y) attains its minimum at y = c which is an interior point6 of V .
Then since we know ∇g(y)|y=c = 0 we can approximate

I(t) −→
∫
B(c)

f(c)e−t[g(c)−
1
2

(y−c)TG(y−c)]dy (56)

as t→∞, where B(c) is a small ball surrounding c and

G ≡ ∇2g(y)|y=c (57)

is the Hessian. We get

I(t) −→ f(c)e−tg(c)

√∣∣∣∣ 2πtG
∣∣∣∣ (58)

after integrating and recognizing the multivariate Gaussian form of the in-
tegral.

For us doing the MDL derivation we have the correspondences from our
problem to the Laplace integral and solution in (55)-(58) given by

f(·) ← p(θ|Hi) (uniform) (59)

t ← N (the number of samples) (60)

c ← θ̂ (the MLE) (61)

y ← θ (62)

g(·) ← − 1

N

N∑
n=1

log(p(un|θ,Hi)) (63)

G ← +J1 (64)

where J1 is the FIM for one snapshot of data, and recall the negative sign in
the definition of the FIM when the second-derivative is used. Consequently
we can write

log(p(u|Hi)Pr(Hi)) → log(p(θ̂|Hi)) + log(p(u|θ̂,Hi)) −
p

2
log(2π)

− 1

2
log(|NJ1|) + log(Pr(Hi)) (65)

Ignoring the terms that don’t scale with N – meaning the first, third and
fifth terms – we have at last the task to look for

arg max
p

{
max
θ∈Θp
{log(p({un}Nn=1))} − 1

2
log(|J|)

}
(66)

6The situation that c is on the boundary of V is also treatable by Laplace’s method,
but is not at issue here.

11

where J = NJ1 is the FIM of the full data.
One interpretation of (66) is that the penalty term is the maximized

logarithm of (43) – with a zero exponent. That is, it is perhaps a fair point
of comparison of the maximized likelihood against what it should be.

I am very fond of Djuric’s development, and of the “full” result (66).
Nonetheless it is worth mentioning that one might consider setting J =
Nσ2I. In that case we have

log(|J|) = p log(N) + p log(σ2) (67)

Again ignoring the terms not increasing with N , we have the original MDL

arg max
p

{
max
θ∈Θp
{log(p({un}Nn=1))} − p

2
log(N)

}
(68)

which is certainly very simple but gives no visibility into models of the same
order. It is worth mentioning that Rissanen, in later papers, enhanced his
development to incorporate the FIM.

3.3 BIC

The BIC is actually equivalent to the form (68) of the MDL. It is “derived”
by assuming the model is from the exponential family.

12

ECE 6123
Advanced Signal Processing

The SVD and its SP Application

Peter Willett

Fall 2017

1 Least Squares Formulation of Wiener Filtering

1.1 The Equations

Let’s suppose we arrange the data into a matrix:
←− uH

1 −→
←− uH

2 −→
...

←− uH
2 −→




w[1]
w[2]

...
w[M]

 ≡ Aw = y∗ ≡


y[1]∗

y[2]∗

...
y[N]∗

 (1)

The Wiener goal is actually the least-squares goal: choose w to minimize
the error

J(w) ≡ ||y − d||2 =
N∑

n=1

|e[n]|2 =
N∑

n=1

|d[n]− y[n]|2 (2)

A lot depends on whether the matrix A is short and fat or tall and skinny.
In the short / fat case the linear system (1) is underdetermined, meaning
there are more variables in w than there are equations to match y to d.That
means that we can make J(w) = 0 with multiple w’s – which one should we
choose? In the tall / skinny case (1) is likewise overdetermined, meaning
that in any nontrivial case we cannot find w such that J(w) = 0 – and
in that case it makes sense to find the minimizing w. The situations are
illustrated below.

A

w

=
yN

M
A

w
=

yN

M

Tall	(overdetermined)

Fat	(underdetermined)

1

If N = M and there is no triviality (linear dependence in columns of A)
then we have a unique solution – this is the least interesting case and we
will ignore it from now on.

1.2 The Overdetermined Case

Presumably this is familiar. To minimize (2) we apply the p.o.o. and see
that optimally

AH (d−Aw) = 0 (3)

or
w = (AHA)−1AHd (4)

unless (AHA) is singular. We could write

AHA =

 ↑ ↑ ↑
u1 u2 . . . uN

↓ ↓ ↓



←− uH

1 −→
←− uH

2 −→
...

←− uH
2 −→

 (5)

=
N∑

n=1

uuH (6)

= NR̂ (7)

where the last equation assumes that the covariance matrix R is estimated
by simple averaging. In a similar way we could write

AHd =

 ↑ ↑ ↑
u1 u2 . . . uN

↓ ↓ ↓




d[1]∗

d[2]∗

...
d[N]∗

 (8)

=
N∑

n=1

ud[n]∗ (9)

= N p̂ (10)

where again the last equation assumes that the cross-correlation vector p is
estimated by simple averaging. Written in this way we have optimally

w = (AHA)−1AHd = (NR̂)−1(N p̂) = R̂−1p̂ (11)

meaning that the solution we get by direct dumb least-squares is identical
to the Wiener solution with block averaging estimates for the covariances.

2

2 The Singular Value Decomposition

2.1 Relationship to Eigendecompositions

Let us assume a matrix A whose dimension is N (rows) by M (columns):
N ×M . Unless M = N we have no eigendecomposition. But suppose we
form left and right products (which are square and of respective dimensions
M ×M and N ×N . Now eigenstuff is available:

(AHA)V = VΓ (12)

(AAH)U = UΛ (13)

where V is unitary (means: VHV = I) and of dimension M × M ; and
likewise U too is unitary (UHU = I) and of dimension N×N . The matrices
Γ and Λ are diagonal with nonnegative elements. Since the rank of A is
min{M,N} this is also the rank of (AHA) and (AA)H . Hence in the short
/ fat case N < M there are1 M −N zeros on the diagonal of Γ; and likewise
in the tall / skinny case N > M there are N −M zeros on the diagonal of
Λ.

What is interesting is to form the identity

UHAAHAV = UHAAHAV (14)

ΛUHAV = UHAVΓ (15)

where to get (15) we’ve substituted (13) on the LHS and (12) on the RHS.
The situation is as illustrated below.

LMxM

=N

N

0Mx(N-M)

0(N-M)xM 0(N-M)x(N-M)

SMxM

0(N-M)xM

M

UHAV

GMxM MSMxM

0(N-M)xM

M

UHAV

M

1There could be more zeros if A is rank-deficient, meaning that some un’s are linearly
dependent; but this is a trivial case and would be dilatory to explore.

3

In the above figure we’ve assumed for concreteness that N > M ; there is no
loss of generality in doing that in this section. Note that we have inserted
the fact that the last N −M rows of UHAV have to be zero: the LHS tells
us that it must be so. We’ve also (slightly) changed notation to denote only
the northwest M ×M block of the premultiplying matrix on the LHS to be
Λ. Now, we can also write

ΛΣ = ΣΓ (16)

and which implies that Σ is the (unnormalized) matrix of eigenvectors of Λ
(or Γ). Since Λ is a diagonal matrix we know that its eigenvectors are the
Cartesian basis vectors: that is, Σ itself has to be diagonal.

And that’s what we wanted to show. Now we know that we have

UHAV =

(
Σ
0

)
(17)

A = U

(
Σ
0

)
VH (18)

in the case that N > M and

UHAV =
(

Σ 0
)

(19)

A = U
(

Σ 0
)

VH (20)

in the case N < M . Equations (18) and (20) represent the singular value
decomposition (SVD) of the matrix A: the product of a unitary N × N
matrix, a diagonal matrix of dimension N ×M and another M ×M unitary
matrix. It’s quite general. As will be seen very shortly the matrices can
be computed via appropriate eigendecompositions; but there are ways to
compute them directly that are far more efficient, especially if N � M or
N �M . The SVD is a primary tool in many signal processing tasks; we will
soon see an example in the adaptive filtering venue, and then more helping
us with spectral estimation.

Again for the case N > M we can also explore

AAH = U

(
Σ
0

)
VHV

(
Σ 0

)
UH (21)

= U

(
Σ2 0
0 0

)
UH (22)

and

AHA = V
(

Σ 0
)

UHU

(
Σ
0

)
VH (23)

4

= VΣ2VH (24)

meaning that Σ2 contains the eigenvalues of (AAH) (or (AHA)). For the
case N < M we have

AAH = U
(

Σ 0
)

VHV

(
Σ
0

)
UH (25)

= UΣ2UH (26)

and

AHA = V

(
Σ
0

)
UHU

(
Σ 0

)
VH (27)

= V

(
Σ2 0
0 0

)
VH (28)

which are the same as (22) and (24), just reversed due to the matrix size.

2.2 The Pseudo-Inverse

The pseudo-inverse, or Moore-Penrose inverse, is defined as

A† ≡ V
(

Σ−1 0
)

UH (29)

if N > M or

A† ≡ V

(
Σ−1

0

)
UH (30)

if N < M . If some elements of Σ are zero the modification is obvious; and
if M = N (and A is full rank) it is easy to see that A† = A−1. So what?

Let’s begin with the case N > M . We have

A†A = V
(

Σ−1 0
)

UHU

(
Σ
0

)
VH (31)

= VIVH (32)

= IM×M (33)

Now let’s examine the case N < M . We now have

AA† = U
(

Σ 0
)

VHV

(
Σ−1

0

)
UH (34)

= U
(

Σ 0
)(Σ−1

0

)
UH (35)

= UIUH (36)

= IN×N (37)

5

We will use these shortly.

2.3 The SVD and the Overdetermined Case

Here we have N > M , the tall / skinny situation. From (33) we write

w = A†d (38)

= V
(

Σ−1 0
)

UHd (39)

= V
(

Σ−1 0
)(UH

1

UH
2

)
d (40)

= VΣ−1UH
1 d (41)

For what it is worth, we could start with (4) and use the SVD to get

w = (AHA)−1AHd (42)

=

[
V
(

Σ 0
)

UHU

(
Σ
0

)
VH

]−1
V
(

Σ 0
)

UHd (43)

= V
(

Σ−1 0
)

UHd (44)

= A†d (45)

= V
(

Σ−1 0
)(UH

1

UH
2

)
d (46)

= VΣ−1UH
1 d (47)

The message: The SVD solves the overdetermined case.

2.4 The SVD and the Underdetermined Case

In the overdetermined case there is no solution to (1), so we found the
solution to minimize the error2. In the underdetermined (short / fat A)
case there is a whole subspace of w’s that solves (1) – which one should we
choose? Unless there are other concerns, a good choice might be to select
the w with minimum length. So we have the optimization problem

Minimize wHw subject to Aw = d (48)

We use Lagrange multipliers, and find

w −AHλ = 0 (49)

2. . . or the residuals.

6

at optimality. Substituting for the constraint we have

AAHλ = d (50)

λ = (AAH)−1d (51)

hence
w = AH(AAH)−1d (52)

Note that the matrix can be assumed in nontrivial cases to be nonsingular
since N < M . Let us substitute for the SVD.

w = AH(AAH)−1d (53)

= V

(
Σ
0

)
UH

[
U
(

Σ 0
)

VHV

(
Σ
0

)
UH

]−1
d (54)

= V

(
Σ
0

)
UH

[
UΣ2UH

]−1
d (55)

= V

(
Σ−1

0

)
UHd (56)

= A†d (57)

=

(
V1

V2

)(
Σ−1

0

)
UHd (58)

= V1Σ
−1UHd (59)

The message is the same: use the SVD.

2.5 Summary: Applying the Pseudo-Inverse

From (45) and (57) it is clear that the SVD – specifically the pseudo-inverse
– can be used to solve both the overdetermined and underdetermined cases:
It is always a safe choice. Perhaps more important3, even if the rows of a
short / fat A or the columns of a tall / skinny A are linearly dependent, the
pseudo-inverse works fine. The only significant difference is that some of the
elements of Σ are zero, and when the pseudo-inverse is formed these remain
zero when Σ−1 is formed. Note that (47) and (59) are not mathematically
necessary to include, but computationally they can save effort.

3We haven’t shown this here because it is messy and irritating, but it it trivial to do.

7

3 The Normalized LMS Adaptive Filter

This is a nice twist on the LMS that uses the theory we’ve learnt about the
SVD. Suppose we want to make a change in wn → wn+1 such that

wH
n+1un = d[n] (60)

meaning that the filter error would have been zero if the filter had been
clairvoyant enough to see un+1 before it happened. To some extent this
seems like making a “rear-view mirror” change. However, the intuition seems
solid: it would appear that the filter is moving in the right direction by such
a move. Now the concern is that (60) is too easy: wn+1 is a vector with M
elements, and we are offering only a rank-one constraint by(60).

Let us define
δn+1 ≡ wn+1 − wn (61)

Inserting this to (60) gives us

(δn+1 + wn)Hun = d[n] (62)

or

δHn+1un = e[n] (63)

uH
n δn+1 = e[n]∗ (64)

where e[n] is the true (not clairvoyant) filter error. This (63) is really a
restatement of (60), but it allows us to see that this is really an underdeter-
mined system, albeit one that is very underdetermined down to N = 1. If
we were to use the pseudo-inverse to “solve” (63) we would find the solution
that minimizes ||δn+1|| – and this seems like a reasonable thing to do.

Applying the SVD we have according to (64) uH
n taking the role “A”;

N = 1 and M is the length of the filter tap-weight vector. Since U and
V are matrices of eigenvectors (unitary matrices, meaning both orthogonal
and normalized) the SVD is

U = 1 a scalar (65)

Σ =
(
||un|| 0 0 . . . 0

)
a row vector with (M − 1) zeros(66)

V =
(

V1 V2

)
where V1 is a column-vector (67)

V1 =
un

||un||
(68)

8

and to be clear: ||x|| ≡
√

xHx defines the norm. Clearly V is M ×M ; but
only the first column is important. Applying the pseudo-inverse, then, we
have from (59)

δn+1 = V1Σ
−1UHe∗ (69)

=
un

||un||2
e[n]∗ (70)

which means

wn+1 = wn +
1

||un||2
une[n]∗ (71)

which for obvious reasons is called the normalized LMS (NLMS) update.
Notice that (71) is very much like the usual LMS filter update, except that
µ is replaced by 1

||un||2 . One can see that the NLMS update is in a sense

more robust than LMS: a large un can force the LMS tap-weight vector
wn+1 to make a large step. If that large un were really just an outlying
sample (something non-Gaussian, say) then it is doubly-harmful to LMS:
both un and e[n] will be large. On the other hand, NLMS de-weights large
un’s, and that is in a practical sense quite appealing. It is also appealing
that there is no need to study convergence to make suggestions for µ, as we
had to do with LMS: the step-size is given. The text devotes much time to
convergence nonetheless, and that is useful if inserted to a real application.

A concern that is raised in the text actually relates to the opposite of
the robustness issues: what happens when un is very small? It is easy to
see that the update then can be large. The proposal is rather a bandage:

wn+1 = wn +

(
µ̃

δ + ||un||2
)

une[n]∗ (72)

The result is a far less beautiful algorithm. But it is probably quite practical.

4 Low-Rank Matrix Approximation

The Frobenius norm for a matrix is a logical extension of the vector L2-norm
to matrices:

||A||2F ≡
N∑

n=1

M∑
m=1

|An,m|2 (73)

meaning that it is the sum of (magnitude-) squares of all the elements. An
equivalent way to express the Frobenius norm is

||A||2F = Tr
(
AHA

)
(74)

9

If we apply the SVD of A we get

||A||2F = Tr
(
VΣUHUΣVH

)
(75)

= Tr
(
VΣ2VH

)
(76)

= Tr
(
VHVΣ2

)
(77)

= Tr
(
Σ2
)

(78)

=

min{M,N}∑
i=1

σ2i (A) (79)

that is, the Frobenius norm is the sum of squares of the singular values.
The low-rank approximation problem is to find Âo to minimize

Âo = arg min
Â
{||A− Â||2F } (80)

with the constraint that the rank of Âo is R < min{M,N}. Let us assume
that the the singular values of A have been ordered such that we have

σ21(A) ≥ σ22(A) ≥ . . . ≥ σ2min{M,N}(A) (81)

whence it is relatively easy to see that the solution is

Âo =
R∑
i=1

σi(A)uiv
H
i (82)

where

||A− Âo||2F =

min{M,N}∑
i=R+1

σ2i (A) (83)

That is, just choose Âo to align with the space corresponding to the R
largest singular values of A.

To see this, suppose that R = 1. We have that Â = αbcH where b and
c are unit length. Now write

||A− Â||2F = Tr
(
(A− αbcH)H(A− αbcH)

)
(84)

= Tr
(
AAH

)
− 2<

{
αTr

(
AHbcH

)}
+ |α|2Tr

(
bcHcbH

)
(85)

= Tr
(
AAH

)
− 2<

{
αTr

(
AHbcH

)}
10

+ |α|2Tr
(
bHbcHc

)
(86)

= Tr
(
AAH

)
− 2<

{
αTr

(
VΣUHbcH

)}
+ |α|2 (87)

=

min{M,N}∑
i=1

σ2i (A) − 2<
{
αTr

(
cHVΣUHb

)}
+ |α|2 (88)

Neither cHV nor UHb can be larger than unity in magnitude. They are
maximized when c and b are aligned to columns in V and U, respectively.
And the middle term is maximized when aligned to the maximum singular
value, yielding

||A− Â||2F = ||A||2F − σ21(A) (89)

We can continue the process with succeeding rank-one matrices to ascertain
(82) and (83).

11

ECE 6123
Advanced Signal Processing:
Markov Chain Monte Carlo

Peter Willett

Fall 2017

1 Importance Sampling

1.1 Estimation of Small Probabilities

Suppose we want to estimate a small probability

α ≡ Pr(x ∈ Ω) (1)

This may sound trivial, and it would be if we were interested, say, in the
Ω = {x : x > τ}. But suppose it is not so simple, and Ω is the set of
noise samples1 that produces an error in an OFDM system with LDPC,
zero-forcing equalization and carrier-offset recovery. We have no hope of
an analytic probability calculation, all we can do is simulate and count the
errors. That is, we estimate

α̂ =
1

N

N∑
i=1

I(xi ∈ Ω) (2)

where I is the indicator, N is the number of Monte Carlo trials, these
indexed by i. It is vary simple to see that

E{α̂} =
1

N

N∑
i=1

E{I(xi ∈ Ω)} (3)

=

∫
Ω
p(x)dx = α (4)

which is good news, but

V ar{α̂}
(E{α̂})2

≈ α/N

α2
=

1

Nα
(5)

1Don’t worry if this OFDM stuff means nothing to you; the point is that it’s a com-
plicated event.

1

which is not good news. Equation (5) means that if you want the standard
deviation of α̂ to be (say) less than 10% of its value, you need N > 100/α
MC trials; and if α is 10−8 this can be a chore.

Fortunately we have importance sampling to help. Consider a new esti-
mator

α̂ =
N∑
i=1

I(xi ∈ Ω)
p(xi)

q(xi)
(6)

where p(·) is the true probability density governing whatever is random
about your problem and q(·) some other “importance” pdf that the samples
used to estimate α̂ are actually drawn from. For example, we might have
Ω = {(x1, x2) : (x1 − 10)2 + (x2 − 15)2 ≤ 1} and p(·) bivariate Gaussian
with mean zero and unity variance. It is fairly clear that α̂ from (2) will
include exactly no indicators that “happen” for any reasonable value of N –
it is useless. But suppose we use (6) with q(·) to mean a Gaussian pdf with
mean (10, 15) and variance of 0.5: then many indicators will fire, and each
of them will force the inclusion to the sum in (6) of many relatively small
values determined by the importance weights p(xi)/q(xi).

The variance of (6) is easily seen to be

V ar(α̂) =
1

N

(∫
Ω

p(x)2

q(x)
dx− α2

)
(7)

which is illuminating for two reasons. The first is that it is minimized
(actually cut down to zero) by

q(x) = p(x|x ∈ Ω) =
p(x)I(x ∈ Ω)

α
(8)

which gives us the helpful information that if we already knew the answer
we could easily use MC techniques to find the answer. This actually really
is useful, since it tells us that there is no “magic bullet” for importance-
sampling – choosing a good q(·) is an art form. But (7) also suggests intu-
ition: if we want to have a low variance we should try to reduce the variation
of p(·)/q(·) of Ω as much as we can. By that logic choosing q(·) to have mean
(9, 14) and unity variance in the previous example may be better than the
q(·) given; and mean mean (11, 16) worse.

2

x

q(x)

g(x)

p(x)

1.2 Importance Sampling for Moments

Consider the situation as above, in which we wish to calculate the expected
value of a function g(x) under the pdf p(x). A direct MC implementation
will probably not work very well, since the “active” part of g(x) occurs where
samples from p(x) are rare. Suppose instead we simulate under q(x) as also
indicated in the plot. Then we get

ḡ =
1

N

N∑
i=1

g(xi)
p(xi)

q(xi)
(9)

so that

E{ḡ(x)} =

∫
g(x)

p(x)

q(x)
q(x)dx = E{g(x)} (10)

meaning that the importance-sampling estimator is unbiased for this case,
too.

2 Motivation for Markov Chain Monte Carlo

2.1 Segmentation

Consider the problem that we are given a record of N data: {u[n]} is zero
mean, independent and Gaussian. There are M segments to the data, such
that if ti−i ≤ n < ti then the variance of u[n] is σ2

i – see below. The problem
is that we don’t know the ti’s (but naturally assume t0 = 0 and tM = N−1)
and we don’t know the σ’s. What do we do?

3

t
t1 t2 t3 t4 t5

s2

Suppose we did know the ti’s. Then solving for σi is fairly simple:

σ̂2
i =

1

ti − ti−1

ti−1∑
n=ti−1

u[n]2 (11)

is the maximum-likelihood estimate (MLE). But finding the ti’s is more of
a problem.

Define tī ≡ {t0, . . . , ti−1, ti+1, . . . , tM} and assume the prior information
is (on t, say) is uniform. We write

p(ti|tk̄,u) =
p(t|u)

p(tī|u)
(12)

∝ p(t|u) (13)

∝ p(u|t) (14)

∝ p({u[n]}ti−1
n=ti−1

|σ2
i)× p({u[n]}ti+1−1

n=ti |σ
2
i+1) (15)

=

 ti−1∏
n=ti−1

1√
2πσ2

i

e
−u[n]

2

2σ2
i

ti+1−1∏
n=ti

1√
2πσ2

i+1

e
− u[n]2

2σ2
i+1

 (16)

where (14) follows from a assumption of uniformity on t and (15) from the
fact that none of the other segments depends on tk, only the one preceding
and succeeding it. Note that (15) is a set of ti+1 − ti−1 − 1 likelihoods that
can be normalized to give a probability mass function. An algorithm follows:

1. Generate some initial ti(0)’s. The initial set does not matter, but a
uniform spacing is probably best. Set the iteration counter k = 1.

2. Calculate {σ̂2
i (k)}Mi=1 according to (11).

3. Set i = 1.

4. Draw ti(k) according to

ti(k) ∼ p({u[n]}ti−1
n=ti−1(k)|σ

2
i (k))× p({u[n]}ti+1(k−1)−1

n=ti |σ2
i+1(k)) (17)

This is from (15) and is made explicit in (16).

4

5. Set i← i+ 1 and if i < M go to 4.

6. Set k ← k + 1 and go to 2 if k ≤ K.

Here K is the number of iterations to perform, and Kb is some number that
will be elided as “burn-in” samples. At the end, estimate

t̂i =
1

K −Kb

K∑
k=Kb+1

ti(k) (18)

for the average. Actually we could take the variance as well to determine
our posterior variance, as we shall see. But what gives us any right to do
such an operation and expect any meaning at the end?

2.2 Bayesian Inference Networks

Actually the procedure just discussed2 is Gibbs sampling, which is far more
general. An example, perhaps the canonical one, is the Bayesian Inference
Network (BIN), pictured below. The arrows indicate known conditional
probabilities, which are assumed known. Each “node” xi is a hidden state
variable, and the z’s are observations – and of these it is possible that only
a subset is known. For example, x2 might be a stock valuation: underpriced
(0), fairly-priced (1) or overpriced (2) – clearly this is a hidden node that
you are interested in. Maybe x4 is institutional interest in the stock (yes
/ no); and x1 is the company’s growth potential. Observation za might
be existence of a dividend, and zc is the company’s price-to-earnings ratio
– these are both something you can observe. Finally, let’s say that zb is
whether there have been buys of the stock by company insiders – this is
something you might know, but might not.

2Actually it was not quite Gibbs sampling, since the MLE step for the σ’s has no place
with Gibbs.

5

X1 X2

X3

X6 X7 X8 X9

X4 X5

ZDZCZBZA

The same approach as in the previous segmentation example can be used
there. It works best if the nodes can only take on a finite number of values,
but that is not necessary. Specifically, do the following:

1. Initialize the instantiated observation nodes – those z’s that you know
– to their true values. These will never change, of course.

2. Initialize all other nodes to random values: that is, the x(0)i’s and also
the un-instantiated z’s. Set k = 1.

3. For all (uninstantiated) nodes calculate

p(xi) = κ

∏
j∈Sp

p(xi|x(k−1)
j)

∏
j∈Sc

p(x
(k−1)
j |xi)

 (19)

for all possible values of xi, where κ normalizes the sum over these to
unity. The set Sp indicates the parent nodes of xi and Sc the child
nodes; see below for an example.

4. Draw new xi’s from the pmf’s calculated in the previous step.

5. Set k ← k + 1 and go to 3 if k ≤ K.

For example, for x4 we have Sp = {x2} and Sc = {x7, x8}; that is,

p(x4|x(k−1)
4̄

, z) ∝ p(x4,x
(k−1)
4̄

|z) (20)

∝ p(x4|x(k−1)
2)× p(x(k−1)

7 |x4)× p(x(k−1)
8 |x4) (21)

6

Note that although in this algorithm it seems like one generates all of the x(k)

based on x(k−1), it is a perfectly legal algorithm that simply uses whatever
the present node values might be, whether updated or not; that is, (19) may

use a combination of x
(k)
j ’s and x

(k−1)
j ’s.

3 Metropolis-Hastings Algorithm

3.1 Theory

Consider these steps, which form the MH (meta-) algorithm:

1. Initialize x0. Set n = 1.

2. Generate y according to q(y|xn).

3. Generate u uniform on (0, 1).

4. Form

α(xn, y) = min

{
1,

π(y)q(xn|y)

π(xn)q(y|xn)

}
(22)

In this step π(·) is the probability (mass function or density) of the
system you are investigating.

5. If u ≤ α(xn, y) set xn+1 = y. Otherwise keep xn+1 = xn.

6. Increment n← n+ 1. Go to 2 unless finished with iterations.

The choice of q(·|·) is a matter of tuning. The superscript for x refers to the
iteration number.

The probability p(·) is assumed to be available. This latter may seem
strange, but in many problems the overall probability is explicit and what
is sought is a marginal probability of some component. Turning the BIN
previously pictured the overall probability is actually fairly simple to write.
In fact it is

π(x, z) = p(zA|x6)p(zB|x7)p(zC |x8)p(zD|x9)

×p(x6|x3)p(x7|x3, x4)p(x8|x4, x5)p(x9|x5)

×p(x3|x1)p(x4|x2)p(x5|x2)p(x1)p(x2) (23)

which is, as advertised, simple; but p(x4|zA, zC) is not at all simple and
would involve a great deal of awkward summation. Another example is
nonlinear filtering: it is (relatively) easy to write π(x1, . . . , xt, z1, . . . , zt);
but it is not easy to find p(xt|z1, . . . , zt). These are cases in which π(·) is

7

explicit; our goal is to generate samples of x (like {x1, . . . , xt}) such that we
can trivially investigate subsets of them (like xt).

Let us first note that we have

α(u, v)

α(v, u)
=

π(v)q(u|v)

π(u)q(v|u)
(24)

or
π(u)q(v|u)α(u, v) = π(v)q(u|v)α(v, u) (25)

since either the numerator or denominator of the LHS must have been
“clamped” at unity.

Now, (22) instructs us that we have

p(xn+1|xn) = α(xn, xn+1)q(xn+1|xn) (26)

+ δ(xn+1 − xn)

(
1−

∫
α(xn, y)q(y|xn)dy

)
Multiply (26) by π(xn) and we get

π(xn)p(xn+1|xn) = π(xn)α(xn, xn+1)q(xn+1|xn) (27)

+ π(xn)δ(xn+1 − xn)

(
1−

∫
α(xn, y)q(y|xn)dy

)
and inserting (25) we have

π(xn)p(xn+1|xn) = π(xn+1)α(xn+1, xn)q(xn|xn+1) (28)

+ π(xn)δ(xn+1 − xn)

(
1−

∫
α(xn, y)q(y|xn)dy

)
The δ-function allows us to switch the terms, hence we have

π(xn)p(xn+1|xn)

= π(xn+1)α(xn+1, xn)q(xn|xn+1) (29)

+ π(xn+1)δ(xn+1 − xn)

(
1−

∫
α(xn+1, y)q(y|xn+1)dy

)
= π(xn+1)p(xn|xn+1) (30)

Equation (30) tells us that we can identify π(xn) and p(xn+1|xn) as respec-
tively the stationary and transition probability mass functions (or densities)
of a Markov chain. Thus, discarding burn-in (transient) xn’s at the be-
ginning, we know that the xn’s that we accumulate by following the given
procedure are distributed according to π(·). That is, we can do things like
take an average over one of the dimensions to get an expected value.

8

It is interesting that the correctness of the MH algorithm does not depend
on the choice of q(·|·). Nonetheless, the efficiency is strongly connected to
q(·|·): an “aggressive” q(·|·) can cover a lot of ground, but may end up
rejecting many putative samples via α(·, ·); similarly a timid q(·|·) does not
waste samples but may take many iterations to explore its space.

3.2 Special Cases of Metropolis-Hastings

3.2.1 Metropolis Sampler

This is probably the original version, and uses a conditional density q(·|·)
such that

q(v|u) = q(u|v) (31)

An example of such a density is the (obvious) Gaussian: under q(v|u), v is
Gaussian with mean u. If the Metropilis version is used we have

α(xn, y) = min

{
1,

π(y)

π(xn)

}
(32)

The statements recently made about aggressive or timid q(·|·) are very clear
in light of (32).

3.2.2 Independence Sampler

The independence sampler uses

q(v|u) = q(v) (33)

and hence

α(xn, y) = min

{
1,
π(y)q(xn)

π(xn)q(y)

}
(34)

Equation (33) means that its mode of exploration does not depend on its
current knowledge at all – the second pair of MC’s in MCMC are suspect.
But it works, and can be thought of as a way to understand the celebrated
“bootstrap” particle filter.

3.2.3 Gibbs Sampler

This one is slightly trickier to understand. The key is to acknowledge that
xn and y are actually multi-dimensional. Let us use yi to refer to the ith

dimension of y; and yī to refer to all dimensions except the ith. Then
according to the Gibbs idea we use

q(yi|xnī) = π(yi|xnī) (35)

9

meaning that we draw a new ith dimension using the true pdf based on all
other dimensions (which are unchanged). In the BIN formulation we can see
how this is accomplished: for our example, we know how to draw x4 based
on x4̄; and this amounts to (21). Now what is especially interesting about
the Gibbs sampler is that we have

α(xnī , yi) = min

{
1,
π(xi|xnī)π(yi|xnī)

π(yi|xnī)π(xi|xnī)

}
= 1 (36)

which means that the Gibbs Sampler never “rejects”.

4 Particle Filters

The particle filter, an approach to the solution of the Chapman-Kolmogorov
equation (CKE) via a Monte Carlo (MC) method, has evolved considerably
over the last years, and there are many versions. The basic idea is most easily
explained using the first version that was feasible, known as the bootstrap
filter or the sequential importance sampling/resampling (SIR or SIS).

Consider the general Markov chain “target” pdf model, which may be
nonlinear and/or non-Gaussian,

p(x[1:t]) = p(x1)
t∏

k=2

p(xk|xk−1) (37)

in which xk is the nx-dimensional target state at time k,

x[1:t] ≡ {x1, x2, . . . , xt} (38)

and p(xk|xk−1) is the state transition pdf. The assumption of white process
noise is what allows one to write (37) in the product form. As usual, the
measurement sequence must be – conditioned on the state – independent
(i.e., white measurement noise), in which case

p(z[1:t]|x[1:t]) =
t∏

k=1

p(zk|xk) (39)

which again is a fairly arbitrary collection of conditionally-independent pdfs.
To develop the idea of the bootstrap filter, consider the following. Using

the Monte Carlo method, N samples {xi[1:t]}
N
i=1 — multiscan particles, which

are nxt vectors — are drawn from the prior density function p(x[1:t]) shown

10

in (37) Then the likelihood of each such sample is evaluated according to
p(z[1:t]|x[1:t]) in (39). We can normalize these likelihoods to “weights”

ωi
[1:t] =

1

c
p(z[1:t]|xi[1:t]) i = 1, . . . , N (40)

where c is chosen such that
∑N

i=1 ω
i
[1:t] = 1, i.e.,

c ≡
N∑
i=1

p(z[1:t]|xi[1:t]) (41)

The weights in (40) are probabilities, assuming equal priors for the samples
{xi[1:t]}

N
i=1. Then one can claim that the desired posterior p(x[1:t]|z[1:t]) is

well represented by the point-mass pdf (or pmf)

p̂[x[1:t]|z[1:t]] =
N∑
i=1

ωi
[1:t]δ(x[1:t] − xi[1:t]) (42)

assuming N , the number of particles, is sufficiently large.
That the representation is reasonable for the posterior mean

x̂[1:t] ≡
∫
x[1:t]p̂(x[1:t]|z[1:t])dx[1:t]

=

∫ N∑
i=1

ωi
[1:t]x[1:t]δ(x[1:t] − xi[1:t])dx[1:t]

=
N∑
i=1

ωi
[1:t]x

i
[1:t] (43)

is straightforward to see as follows. Consider the expected value of (43) over
the samples {xi[1:t]}

N
i=1

E
{
x̂[1:t]|z[1:t]

}
= E

{
N∑
i=1

ωi
[1:t]x

i
[1:t]

}

=

∫ N∑
i=1

ωi
[1:t]x

i
[1:t]p(x

i
[1:t])dx

i
[1:t]

=

∫ N∑
i=1

1

c
p(z[1:t]|xi[1:t])x

i
[1:t]p(x

i
[1:t])dx

i
[1:t]

≈
∫ N∑

i=1

1

Np(z[1:t])
p(z[1:t]|xi[1:t])x

i
[1:t]p(x

i
[1:t])dx

i
[1:t]

11

=
1

N

N∑
i=1

∫
xi[1:t]p(x

i
[1:t]|z[1:t])dx

i
[1:t]

= E
{
x[1:t]|z[1:t]

}
(44)

The approximation in (44) is that

p(z[1:t]) =

∫
p(z[1:t]|x[1:t])p(x[1:t])dx[1:t]

≈
∫
p(z[1:t]|x[1:t])

N∑
i=1

1

N
δ(x[1:t] − xi[1:t])dx[1:t]

=
1

N

N∑
i=1

p(z[1:t]|xi[1:t]) =
c

N
(45)

The above forms the basis for particle filter-based track-likelihood eval-
uation and track-testing

p(z[1:t]) = p(z(t)|z[1:t−1])p(z[1:t−1])

= p(z[1:t−1])

∫
p(zt|xt)p(xt|z[1:t−1])dxt

≈ p(z[1:t−1])

∫
p(zt|xt]

1

N

N∑
i=1

δ[xt − xit]dxt

= p(z[1:t−1])
1

N

N∑
i=1

p(zt|xit)

=
t∏

k=1

(
1

N

N∑
i=1

p(zk|xik)

)
(46)

similar to the χ2 statistic that one might use in a Kalman filter context,
but for more general models. The track likelihood (46) is recognizable as
the product of unnormalized particle weights (which have to be calculated
anyway), and certainly the second formula in (46) shows that it can be
evaluated iteratively.

Consequently an efficient means to generate {xi[1:t]}
N
i=1 — recall that for

an nx-dimensional state, each xi[1:t] is nxt dimensional — is key. The steps
are as follows:

Prediction: Given xi[1:t−1] we draw xit from it according to

xit ∼ p(xit|xit−1) (47)

and thence augment xi[1:t−1] to xi[1:t].

12

Update: Calculate

ωi
[1:t] =

1

c
p(z[1:t]|xi[1:t])

=
1

c′
p(zt|xit)ωi

[1:t−1] (48)

The last line above will, in general, require a new normalization.

Note that (47) and (48) imply that it is not necessary to work with
nxt-dimensional particles {xi[1:t]}

N
i=1 and weights {ωi

[1:t]}
N
i=1. Instead, as a

practical matter all that one need retain is their value at time t: {xit}Ni=1

and weights {ωi(t)}Ni=1, which may be taken as a statement that {xit}Ni=1 and
{ωi(t)}Ni=1 are sufficient for x(t) given observations {zk}tk=1. With reference
to (43), any moment of x(t) can be approximated from these alone.

To be specific about these steps, if one were to use a particle filter to
estimate in a linear/Gaussian situation (which one never would — one would
use a Kalman filter) one would predict by drawing the ith particle at time t
as xit = Fxit−1 + vit, where vit is simply the realization of a Gaussian random
vector with covariance Q. The weight for the ith particle is the likelihood

ωi(t) =
1

c

1√
|2πR|

e−
1
2

[zt−Hxit]
′R−1[zt−Hxit] (49)

with appropriate normalization.
Unfortunately there is a problem — particle degeneracy — namely, the

tendency for all the weights save one to go to zero. This tendency — really
a compulsion in any nontrivial case — arises from the product in (48),
and it severely limited the acceptance of Monte Carlo approaches in their
early days. Fortunately there is a solution: resampling. The especially easy
resampling in the bootstrap filter is to sample with replacement from {xit}Ni=1

according to probabilities {ωi(t)}Ni=1. We note that in a mathematical sense
this sampling is optional, and in some implementations it is performed only
when degeneracy seems to be occurring, not necessarily at every update
step. It is important to realize that such resampling can (and usually does)
result in many repeated (i.e., copied) particles, those corresponding to the
largest likelihoods (the largest ωi(t)’s). This is an evanescent concern, since
the next prediction step in (47) adds different “noise” to each of these.

We therefore restate the operation of the bootstrap filter as

Prediction: For i = 1, . . . , N draw x̃it from xit−1 according to

x̃it ∼ p(xit|xit−1) (50)

13

Update: For i = 1, . . . , N calculate and normalize to unity-sum the weights

ωi(t) =
1

c
p(zt|x̃it) (51)

Resampling: Draw {xit}Ni=1 from {x̃it}Ni=1 according to the pmf {ωi(t)}Ni=1.

This shows that multiscan particles, while helpful to intuition, are not
part of a practical particle filter system. Note that the fact that the re-
sampling operation at t − 1 used {ωi(t − 1)}Ni=1, makes it inappropriate to
use these weights again in the update step for {ωi(t)}Ni=1: only the present
likelihoods are used.

One interesting variation on the particle filter is having xi(t) drawn ac-
cording to some alternative proposal density q(xit|xit−1) for the prediction
instead of the prior (or transition) density p(xit|xit−1). Then this “incorrect”
prediction step can be exactly canceled in the typical importance sampling
manner by using the appropriate importance weight. That is, the three
particle filtering steps become

Importance-Weighted Prediction: Draw x̃it from xit−1, according to

x̃i(t) ∼ q(x̃it|xit−1) (52)

Importance-Weighted Update: Calculate

ωi
[1:t] =

1

c
p(zt|x̃it)

p(x̃it|xit−1)

q(x̃it|xit−1)
(53)

Resampling: Draw {xit}Ni=1 from {x̃it}Ni=1 via the pmf {ωi(t)}Ni=1.

The resampling step is unaffected. That (53) is appropriate, is easily checked
by a development similar to (44)

A properly chosen q(·|·) can “steer” particles to be predicted to places
where they are likely to be corroborated by measurements, namely, (52)
becomes

x̃it ∼ q(x̃it|xit−1; zt) (54)

This is as opposed to the standard procedure (47) and (48) where many
predicted particles can be, in effect, wasted with essentially-zero weights,
leaving relatively few (or no!) “working” particles near where the measure-
ment makes them likely. Common choices for the proposal density include
the transition density with inflated noise, the EKF and UKF.

The key step – which must be credited to Gordon, Salmond & Smith
– in making particle filters practical was resampling and that estimation is

14

performed recursively in time, as opposed to the batch approach with the
notional “multiscan particles” discussed at the beginning of this section. In
addition to proposal density improvements there have been many interesting
variations. One of the most widely accepted is the auxiliary particle filter
that directly uses the measurement at time t to guide the proposal density
selection. It is worth noting that success in dealing with data association
problems has proven elusive to particle filters — this is perhaps despite the
interpretation of measurement origin uncertainty as a form of non-Gaussian
noise. Nonetheless, multiple model systems (of the sort for which the IMM
would be appropriate) can be treated using the Rao-Blackwellization pol-
icy, which splits the inference task into parts that are “easy” to solve (like
filtering with a known mode sequence) relegated to quick algorithms, with
more difficult ones (like mode estimation) that are assigned to particles.

5 The Ensemble Kalman Filter

The EnKF is only really of interest in problems that are extremely large-
scale in their state space, as happens in geophysics and meteorology, for
example. If the state space has dimension of several thousand (or more!)
we might decide to implement a Kalman filter in parallel Monte Carlo form.
That is, many processors each are given responsibility for a few particles –
and the total number of particles across all processors may be less than the
state dimension. It is typical to specify

dimension of observations (m) � number of particles (N)

� dimension of state (n) (55)

for an EnKF to be useful.
Now, consider we have a collection of particles {xi

t−1|t−1}
N
i=1 that rep-

resent the state at time t− 1, and we sample them forward3 to {xi
t|t−1}

N
i=1

according to
xi
t|t−1 = Fxi

t−1|t−1 + vi
t (56)

where vi
t are iid N (0,Q). The natural particle-filter next step is to weight

each particle by the observation likelihood

p(zt|xi
t|t−1) = N (Hxi

t|t−1,R) (57)

As we have discussed earlier, this will require resampling in order to work
well, and resampling is not well suited to parallel implementation.

3This is obvious: coast and add noise.

15

Another approach is to take the ensemble covariance

Q̂ =
1

N − 1

N∑
i=1

(xi
t|t−1)(xi

t|t−1)T −
(

1

N

N∑
i=1

xi
t|t−1

)2

(58)

and thence compute the “optimal” posterior ensemble of particles

xi
t|t = xi

t|t−1 + Q̂HT
(
HQ̂HT + R

)−1 (
zt −Hxi

t|t−1

)
(59)

Unfortunately all the resulting particles are correlated, since all are the result
of the same measurement noise that gave rise to zt. That is,

E
{(

zt −Hxi
t|t−1

) (
zt −Hxj

t|t−1

)T}
(60)

= E
{(

(zt −Hxt)− (Hxi
t|t−1 −Hxt)

)
×
(
(zt −Hxt)− (Hxj

t|t−1 −Hxt)
)T}

(61)

= R (62)

and this is just wrong.
The EnKF idea is to replace (59) by

xi
t|t = xi

t|t−1 + Q̂HT
(
HQ̂HT + R

)−1 (
zit −Hxi

t|t−1

)
(63)

where
zit = zt + wi

t (64)

and wi
t are iid N (0,R), meaning that we actually add noise4 to the mea-

surement before doing the Kalman update: each particle xi
t|t−1 is updated

via its own noisy measurement zit. The ensemble posterior covariance is
obviously correct, too.

The implementation of the EnKF uses, instead of (58),

Q̂ =
1

N − 1
AtA

T
t (65)

where

At ≡

 ↑ ↑ . . . ↑
(x1

t|t−1 − x̄t|t−1) (x2
t|t−1 − x̄t|t−1) . . . (xN

t|t−1 − x̄t|t−1)

↓ ↓ . . . ↓

 (66)

4This is the right thing to do. But I am still emotionally offended by the idea that the
right thing to do is to add noise. It almost implies that the Kalman filter is not optimal.

16

and we also define

D ≡

 ↑ ↑ . . . ↑
z1
t − zt z2

t − zt . . . zNt − zt
↓ ↓ . . . ↓

 (67)

for the observation that has this artificial noise added. Note that the ex-
pected value of the particles has to be calculated, but this is simple since it
is just the mean of the local means at each of the parallel processing units.
Now (63) becomes

At = At−1 + At−1(HAt−1)T
(
(HAt−1)(HAt−1)T + R

)−1
(D− (HAt−1))

(68)
which implies that each particle can be updated in relative isolation, with
the exception that the m × m covariance matrix must be calculated and
inverted. Note that (HAt−1) has dimension m × N – no need for a large
matrix computation.

17

ECE 6123
Advanced Signal Processing:
Multi-Rate Signal Processing,

Multi-Resolution Decomposition
and Wavelets

Peter Willett

Fall 2017

1 Decimation and Interpolation

1.1 Decimation

This is a review from basic Digital Signal Processing, but please bear with
it. First, consider the decimation operation

y[n] = x[nD] (1)

in which D is some integer – say, for D = 2 this amounts to forming y[n]
from the even-indexed samples of x[n]. The transform relationship comes
from doing this in two steps:

y[n] = u[nD] where u[n] =

{
x[n] n = mD

0 else
(2)

We begin with the noble identity

N−1∑

p=0

ej2πpm/N = N
∞∑

q=−∞
δ[m− qN] (3)

which is easy to show via the geometric series formula (special case of sum-
ming N 1’s when m = qN).

Now we write

u[n] =
1

D

N−1∑

k=0

ej2πkn/Dx[n] (4)

1

so

U(z) =
∞∑

n=−∞

1

D

N−1∑

k=0

ej2πkn/Dx[n]z−n (5)

=
1

D

N−1∑

k=0

X(ze−j2πk/D) (6)

U(ω) =
1

D

N−1∑

k=0

X (ω − 2πk/D) (7)

It is easy to see that we have

Y (z) =
∞∑

n=−∞
u[nD]z−n (8)

= U(z1/D) (9)

=
1

D

N−1∑

k=0

X(z1/De−j2πk/D) (10)

Y (ω) = U(ω/D) (11)

=
1

D

N−1∑

k=0

X

(
ω − 2πk

D

)
(12)

pp/D

d d

X(w)

p2p/D

d d

U(w)

d d d dd d d d

p

d d

Y(w)

See above for an illustration. Note that in the above figure the bandwidth
of X(ω) is constrained to be less than π/D; if this were not so we would
have aliasing. We are not interested in aliasing in the current discussion.
And in any case we could pre-filter (with an “anti-aliasing” filter) the signal
x[n] to make sure that no frequency components above π/D remain, as in
the figure below.

xorig[n] ∂H(w) ∂D
x [n]

y [n]

2

It is useful to note that if h[n] is finite impulse-response (FIR) of length
L then while each y[n] requires L operations, that means that only L/D
operations are needed per sample of x[n]. It is also worth mentioning that
the case D = 2

Y (z) =
1

2

(
X(z1/2) + X(−z1/2)

)
(13)

Y (ω) =
1

2

(
X
(ω

2

)
+ X

(ω
2

+ π
))

(14)

will especially interest us.

1.2 Interpolation

With reference to the previous discussion, the interpolation essentially refers
to starting with y[n] and re-formulating u[n]. Switching input to x[n] we
thence have

u[n] =

{
x[m] n = mD

0 else
(15)

meaning that between each sample of x[n] we simply insert (D− 1) 0’s. It’s
obvious that we have

U(z) =
∞∑

n=−∞
u[n]z−n (16)

=
∞∑

m=−∞
u[m]z−nD (17)

= X(zD) (18)

U(ω) = X(ωD) (19)

The system is as shown below.

x[n] ∂ G(w)D y [n]
u[n]

And the spectra are as shown here.

pp/D

d d

Y(w)

p2p/D

d d

U(w)

d d d dd d d d

p

d d

X(w)

3

Note that replica spectra appear in U(ω); in many applications it is desirable
to suppress these so we have above represented the final output y[n] as being
after another filter. It is commonly known as an “interpolation” filter since
its function / effect is to insert smoothed values over the (D−1) 0’s that are
in u[n]. Note, again, that since only every Dth sample of u[n] is non-zero
only L/D operations per output of y[n] are needed for this interpolation
operation.

2 Filter Banks

2.1 Transforming Data via the Block-DFT

A transformation of data that concentrates signal energy in a few samples
makes for better signal understanding, representation, manipulation and
coding. One such transformation is the block-DFT.

time
N 2N 3N 4N 5N

fre
qu

en
cy

2p/N
4p/N
6p/N

p

The illustration above is intended to illustrate the shape of the transformed
components to the block-DFT. The block-DFT has several nice properties:

• It is invertible – no information is lost.

• It is orthogonal – if the input is white, the transformed components
are white, too.

• It is efficient – via the FFT it requires only log2(N) operations per
output.

There is one disadvantage, however, and it is perhaps best illustrated in
the notional plot just shown. It is this: high-frequency components corre-
spond to features in the original signal that are of short duration. How-
ever, the time-swath of the DFT is the same for all frequencies: that is, a

4

high-frequency component measures the amount of high-frequency energy
over the entire block of N data. Since high-frequency components are by
their nature fast-changing it would make more sense to have them measur-
ing energy at those frequencies over shorter periods of time as compared
to lower-frequency components that measure long-term trends and smooth
features.

Now, a transformation that is invertible is really, in linear-algebraic
terms, a change of basis. How is a DFT that? Consider

X = Wx (20)

in which

W ≡




1 1 1 1 . . . 1

1 WN W 2
N W 3

N . . . WN−1
N

1 W 2
N W 4

N W 6
N . . . W

2(N−1)
N

1 W 3
N W 6

N W 9
N . . . W

3(N−1)
N

...
...

...
...

. . .
...

1 WN−1
N W

2(N−1)
N W

3(N−1)
N . . . W

(N−1)(N−1)
N




(21)

and of course
WN ≡ e−j2π/N (22)

That is, the DFT operation is really a matrix/vector multiplication. We
know that the FFT gives us an efficient way to implement it – better than
the N2 operations that a direct matrix/vector multiply would normally take
– and we also know that WWH = NI, meaning that it is orthogonal. Are
there other matrices that have the same properties?

2.2 Transforming Data via a Filter Bank

The question was just posed as to whether there any other transformation
matrices that have the same three nice properties as the block-DFT. The
answer is most certainly yes – see the figure below – and, even better, we
have one such that does avoids the block-DFT’s “disadvantage” in terms of
compatibility of time-averaging to frequency. This an “octave” filter bank,
and of course other decimation factors could be imagined.

5

x[n]

∂H1 (w) ∂2

∂H0 (w) ∂2

∂H1 (w) ∂2

∂H0 (w) ∂2

∂H1 (w) ∂2

∂H0 (w) ∂2 …

We will treat invertibility and orthogonality soon. But as for efficiency, let
us assume that both filters H0(ω) and H1(ω) are of length L. Then the
upper-most branch requires L/2 operations per input sample of x[n] and
so does the lower branch. The second level likewise 2L/4. Overall, the
computational load is

L

∞∑

k=0

2−k = 2L (23)

operations per input x[n], assuming that the filter-back goes on “forever.”
In fact – and rather unusually for an FIR filter – we will not be interested
in especially long filters. A value L = 8 is quite normal.

Let’s just pretend that H0(ω) is a perfect LPF with cutoff at π/2 and
that H1(ω) is a perfect HPF also at H0(ω). Then the time-frequency plot
would look like the below.

time

fre
qu

en
cy

p

p/2

p/4

p/8

p/16

2 4 8 16 32

(Please note that only four levels of decimation have been represented here;
in general this is arbitrary, and in principle it can go on . . . forever.) The
point is that the representation may be more appropriate than the block
DFT since components at higher frequencies use data over shorter time
windows.

6

So we have efficiency and appropriateness. Now it is time to discuss
invertibility and orthogonality. Before we begin, however, let us examine
the notional idea that H0(ω) and H1(ω) are a perfect LPF and HPF. It
seems relatively clear that such surgical splitting avoids aliasing and enables
reconstruction. The cost, however, is that L would seem to need to be very
large. But wait! The block DFT actually allows aliasing and uses filters of
length N? It appears that some kinds of aliasing do not destroy information.

3 Perfect-Reconstruction Filter Banks

3.1 The Half-Band Condition

We wish to change the basis via a filter bank, but we demand that we
lose no information as we do so – we could call this invertibility of perfect
reconstruction. The basic building block for analysis is as below, and clearly
we want y[n] = x[n− l] for some l. Note that the two middle blocks (down-
sample then up-sample) may look like they cancel; but they do not, since
their back-to-back pair amounts to setting every other sample to zero.

x[n]

∂H0 (w) ∂2

∂H1 (w) ∂2

∂2

∂2

∂F0 (w)

∂F1 (w)

y[n]

Using what we have discovered about sample-rate conversion, we have after
the up-sample operation on the upper branch

1

2
(H0(z)X(z) +H0(−z)X(−z)) (24)

which means

Y (z) =
1

2
(H0(z)F0(z)X(z) +H0(−z)F0(z)X(−z))

+
1

2
(H1(z)F1(z)X(z) +H1(−z)F1(z)X(−z)) (25)

which means that in order that we have y[n] = x[n− l] we need

H0(z)F0(z) +H1(z)F1(z) = 2z−l (26)

H0(−z)F0(z) +H1(−z)F1(z) = 0 (27)

7

This turns out to be way under-determined. So we adopt the common choice

F0(z) = H1(−z) (28)

so that we require
F1(z) = −H0(−z) (29)

in order to have (27) be satisfied.
It is interesting to substitute (28) and (29) into (26) and then to evaluate

the result at both z and −z; we get

H0(z)F0(z)−H0(−z)F0(−z) = 2z−l (30)

H0(−z)F0(−z)−H0(z)F0(z) = 2(−1)lz−l (31)

which implies that l must be odd.
It is also convenient to define

P (z) ≡ zlH0(z)F0(z) (32)

= zlH0(z)H1(−z) (33)

so since (−z)l = −zl (as l is odd), we can write

P (z) + P (−z) = 2 (34)

This is the half-band condition, and is perhaps familiar as the first Nyquist
criterion for pulse-shaping from digital communications. The half-band con-
dition is sufficient (and by no means necessary!) for perfect reconstruction.
And in fact the half-band condition is itself underdetermined.

3.2 The Haar Example

Here we have

H0(z) =
1√
2

(1 + z−1) (35)

F0(z) =
1√
2

(1 + z−1) (36)

H1(z) =
1√
2

(1− z−1) (37)

F1(z) = − 1√
2

(1− z−1) (38)

8

It is interesting that while (35) is the Haar filter1 and that (37) & (38) follow
from (28) & (29) applied to (35) & (36), the actual choice of (36) is really
quite arbitrary. In fact, inserting (35) into (26) gives us

[F0(z)− F0(−z)] + z−1[F0(z) + F0(−z)] = 2
√

2z−l (39)

(odd-indexed terms) + z−1(odd-indexed terms) =
√

2z−l (40)

This implies that there are only two adjacent non-zero terms in F0(z); it
makes sense to choose a first-order F0(z), but we still have

f0[1]z−1 + z−1(f0[0]) = 2
√

2z−l (41)

from (39). For symmetry and linear phase we choose (36).

x[n]

∂ ∂2

∂ ∂2

∂2

∂2

y[n]

A B C D

E F G H

x[n]

∂1+z-1 ∂2

∂ ∂2

∂2

∂2

∂

∂

y[n]

1+z-1

1-z-1 -(1-z-1)

A B C D

E F G H

1p
2

�
1 + z�1

�
(37)

1p
2

�
1� z�1

�
(38)

� 1p
2

�
1� z�1

�
(39)

The figure above shows a scaled version of the Haar system. We have:

A: . . . , x[0] + x[�1], x[1] + x[0], x[2] + x[1], x[3] + x[2], x[4] + x[3], . . .

B: . . . , x[0] + x[�1], x[2] + x[1], x[4] + x[3], . . .

C: . . . , x[0] + x[�1], 0, x[2] + x[1], 0, x[4] + x[3], . . .

D: . . . , x[0] + x[�1], x[0] + x[�1], x[2] + x[1], x[2] + x[1], x[4] + x[3], . . .

E: . . . , x[0]� x[�1], x[1]� x[0], x[2]� x[1], x[3]� x[2], x[4]� x[3], . . .

F: . . . , x[0]� x[�1], x[2]� x[1], x[4]� x[3], . . .

G: . . . , x[0]� x[�1], 0, x[2]� x[1], 0, x[4]� x[3], . . .

H: . . . , x[�1]� x[0], x[0]� x[�1], x[1]� x[2], x[1]� x[2], x[3]� x[4], . . .

y: . . . , 2x[�1], 2x[0], 2x[1], 2x[2], 2x[3], . . .

9

x[n]

∂1+z-1 ∂2

∂ ∂2

∂2

∂2

∂

∂

y[n]

1+z-1

1-z-1 -(1-z-1)

A B C D

E F G H

1p
2

�
1 + z�1

�
(37)

1p
2

�
1� z�1

�
(38)

� 1p
2

�
1� z�1

�
(39)

The figure above shows a scaled version of the Haar system. We have:

A: . . . , x[0] + x[�1], x[1] + x[0], x[2] + x[1], x[3] + x[2], x[4] + x[3], . . .

B: . . . , x[0] + x[�1], x[2] + x[1], x[4] + x[3], . . .

C: . . . , x[0] + x[�1], 0, x[2] + x[1], 0, x[4] + x[3], . . .

D: . . . , x[0] + x[�1], x[0] + x[�1], x[2] + x[1], x[2] + x[1], x[4] + x[3], . . .

E: . . . , x[0]� x[�1], x[1]� x[0], x[2]� x[1], x[3]� x[2], x[4]� x[3], . . .

F: . . . , x[0]� x[�1], x[2]� x[1], x[4]� x[3], . . .

G: . . . , x[0]� x[�1], 0, x[2]� x[1], 0, x[4]� x[3], . . .

H: . . . , x[�1]� x[0], x[0]� x[�1], x[1]� x[2], x[1]� x[2], x[3]� x[4], . . .

y: . . . , 2x[�1], 2x[0], 2x[1], 2x[2], 2x[3], . . .

9

∂

x[n]

∂1+z-1 ∂2

∂ ∂2

∂2

∂2

∂

∂

y[n]

1+z-1

1-z-1 -(1-z-1)

A B C D

E F G H

1p
2

�
1 + z�1

�
(37)

1p
2

�
1� z�1

�
(38)

� 1p
2

�
1� z�1

�
(39)

The figure above shows a scaled version of the Haar system. We have:

A: . . . , x[0] + x[�1], x[1] + x[0], x[2] + x[1], x[3] + x[2], x[4] + x[3], . . .

B: . . . , x[0] + x[�1], x[2] + x[1], x[4] + x[3], . . .

C: . . . , x[0] + x[�1], 0, x[2] + x[1], 0, x[4] + x[3], . . .

D: . . . , x[0] + x[�1], x[0] + x[�1], x[2] + x[1], x[2] + x[1], x[4] + x[3], . . .

E: . . . , x[0]� x[�1], x[1]� x[0], x[2]� x[1], x[3]� x[2], x[4]� x[3], . . .

F: . . . , x[0]� x[�1], x[2]� x[1], x[4]� x[3], . . .

G: . . . , x[0]� x[�1], 0, x[2]� x[1], 0, x[4]� x[3], . . .

H: . . . , x[�1]� x[0], x[0]� x[�1], x[1]� x[2], x[1]� x[2], x[3]� x[4], . . .

y: . . . , 2x[�1], 2x[0], 2x[1], 2x[2], 2x[3], . . .

9

∂

x[n]

∂1+z-1 ∂2

∂ ∂2

∂2

∂2

∂

∂

y[n]

1+z-1

1-z-1 -(1-z-1)

A B C D

E F G H

1p
2

�
1 + z�1

�
(37)

1p
2

�
1� z�1

�
(38)

�1p
2

�
1� z�1

�
(39)

The figure above shows a scaled version of the Haar system. We have:

A: . . . , x[0] + x[�1], x[1] + x[0], x[2] + x[1], x[3] + x[2], x[4] + x[3], . . .

B: . . . , x[0] + x[�1], x[2] + x[1], x[4] + x[3], . . .

C: . . . , x[0] + x[�1], 0, x[2] + x[1], 0, x[4] + x[3], . . .

D: . . . , x[0] + x[�1], x[0] + x[�1], x[2] + x[1], x[2] + x[1], x[4] + x[3], . . .

E: . . . , x[0]� x[�1], x[1]� x[0], x[2]� x[1], x[3]� x[2], x[4]� x[3], . . .

F: . . . , x[0]� x[�1], x[2]� x[1], x[4]� x[3], . . .

G: . . . , x[0]� x[�1], 0, x[2]� x[1], 0, x[4]� x[3], . . .

H: . . . , x[�1]� x[0], x[0]� x[�1], x[1]� x[2], x[1]� x[2], x[3]� x[4], . . .

y: . . . , 2x[�1], 2x[0], 2x[1], 2x[2], 2x[3], . . .

9

The figure above shows a scaled version of the Haar system. We have:

A: 1√
2
{. . . , x[0] + x[−1], x[1] + x[0], x[2] + x[1], x[3] + x[2], x[4] + x[3], . . .}

B: 1√
2
{. . . , x[0] + x[−1], x[2] + x[1], x[4] + x[3], . . .}

C: 1√
2
{. . . , x[0] + x[−1], 0, x[2] + x[1], 0, x[4] + x[3], . . .}

D: 1
2 {. . . , x[0] + x[−1], x[0] + x[−1], x[2] + x[1], x[2] + x[1], x[4] + x[3], . . .}

E: 1√
2
{. . . , x[0]− x[−1], x[1]− x[0], x[2]− x[1], x[3]− x[2], x[4]− x[3], . . .}

F: 1√
2
{. . . , x[0]− x[−1], x[2]− x[1], x[4]− x[3], . . .}

G: 1√
2
{. . . , x[0]− x[−1], 0, x[2]− x[1], 0, x[4]− x[3], . . .}

H: 1
2 {. . . , x[−1]− x[0], x[0]− x[−1], x[1]− x[2], x[1]− x[2], x[3]− x[4], . . .}

y: {. . . , x[−1], x[0], x[1], x[2], x[3], . . .}
1The Haar filter is just a running two-sampler average.

9

The last line (the final output y[n]) is obtained from adding the signals at
D and H. Note that it is identical to the input x[n] – perfect recovery! –
except for a delay by a single time-step (l = 1).

One more note on the Haar system is appropriate. Consider the octave
filter bank structure, with the Haar filter and the change-of-basis interpre-
tation (20). Stopping after three levels, the matrix W is

W = (42)


a −a 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 a −a 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 a −a 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 a −a 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 a −a 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 a −a 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 a −a 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 a −a
b b −b −b 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 b b −b −b 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 b b −b −b 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 b b −b −b
c c c c −c −c −c −c 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 c c c c −c −c −c −c
d d d d d d d d −d −d −d −d −d −d −d −d
d d d d d d d d d d d d d d d d




where a = 1/
√

2, b = 1/2, c = 1/
√

8, d = 1/4. What is intended to
be illustrated here is that the basis vector is the same at all levels, just
translated within that level and dilated (by a factor of two) as the level is
deepened. So if an artifact has a good projection onto (match with) some
basis, the same artifact dilated by a factor of two would appear at a deeper
level. This is why this is said to be a decomposition according to scale.

4 Orthogonal Filter Banks

To avoid too much subscripting, and to be in commonality with the litera-
ture, we’ll switch from H0(z) & H1(z) to C(z) & D(z), as shown below.

10

x[n]

∂D(z) ∂2

∂C(z) ∂2

∂D(z) ∂2

∂C(z) ∂2

∂D(z) ∂2

∂C(z) ∂2 …

u[n]

v[n]

It’s worth expressing the output of the top two branches as a matrix-vector
multiplication, shown in (43) for L = 4:




...
u[n]
v[n]

u[n− 1]
v[n− 1]

...




=




...
...

...
...

...
...

...
c0 c1 c2 c3 0 0 . . .
d0 d1 d2 d3 0 0 . . .
0 0 c0 c1 c2 c3 . . .
0 0 d0 d1 d2 d3 . . .
...

...
...

...
...

...
...







...
x[n]

x[n− 1]
x[n− 2]
x[n− 3]
x[n− 4]
x[n− 5]

...




(43)

For orthogonality we require

∑

n

cncn−2k = δ[k] (44)

∑

n

cndn−2k = 0 (45)

∑

n

dndn−2k = δ[k] (46)

As usual we have rather too much freedom to select the filters. For now
assume that {c[n]} is already picked. The Smith-Barnwell/Mintzer choice
for {d[n]} is

D(z) = −z−(L−1)C(−z−1) (47)

= −z−(L−1)(c0 − c1z + c2z
2 − . . .+ (−1)(L−1)cL−1z

L−1) (48)

= (−1)LcL−1 + . . .− c2z
−(L−3) + c1z

−(L−2) − c0z
−(L−1) (49)

The Smith-Barnwell/Mintzer choice is not the only one, but it is fairly nice
for the following reasons.

11

Smith Barnwell/Mintzer is Nice: Perfect Reconstruction
According to (33) we define, with l = L− 1,

P (z) = z(L−1)H0(z)H1(−z) (50)

= z(L−1)C(z)D(−z) (51)

= z(L−1)C(z)(−(−z)−(L−1)C(z−1)) (52)

= C(z)C(z−1) (53)

since l = L− 1 has to be odd. Now, notice that this refers to

p[n] = c[n] ? c[−n] (54)

Looking at (44) and realizing that this is a constraint on the down-
sampled {p[n]}, we have

P (z) + P (−z) = 2 (55)

or
C(z)C(z−1) + C(−z)C(−z−1) = 2 (56)

What this means is that (44) is the same as the half-band condition
from (34). If we select C(z) to satisfy (55) then we have both perfect
reconstruction and one out of three conditions for orthogonality.

Smith Barnwell/Mintzer is Nice: Self-Orthogonality
We just found out that if (44) with the Smith-Barnwell-Mintzer condi-
tion (44) then we have perfect reconstruction (invertibility). We also
have the same property for {d[n]}:

D(z)D(z−1) +D(−z)D(−z−1)

= (−z−(L−1)C(−z−1))(−z(L−1)C(−z))
+(z−(L−1)C(z−1))(z−(L−1)C(z)) (57)

= Q(z) +Q(−z) (58)

That is, if C(z) is chosen to satisfy (56) then both (44) and (46) are
satisfied.

Smith Barnwell/Mintzer is Nice: Cross-Orthogonality
Just as good, we have

C(z)D(z−1) + C(−z)D(−z−1)

= C(z)(−z(L−1)C(−z)) + C(−z)(z−(L−1)C(z)) (59)

= 0 (60)

so (45) is satisfied as well. That is, we have orthogonality!

12

This “half-band” condition – introduced as a sufficient condition for per-
fect reconstruction (invertibility) in (34) and rediscovered as a by-product
of the Smith-Barnwell/Mintzer choice in (55) that also gives orthogonality
– is also known as the first Nyquist condition in digital communications. It
is perhaps worth mentioning that any filter satisfying the half-band condi-
tion gives rise to a structure commonly known as a quadrature mirror filter
(QMF) bank. Below we see three possible configurations for a viable P (z).

p

P(w)

p

P(w)

p

P(w)

2 2

p/2 p/2 p/2

2

On the left is the rather obvious brick-wall filter. This is fine, but even to
approximate it requires a very large L: no good. The middle is better, and
it becomes clear how aliasing is not the deal-killer we thought it might be.
On the right is the “raised-cosine” filter that uniquely satisfies both first
and second Nyquist criteria. Here we have

P (ω) = 1 + cos(ω) (61)

=
1

2
ejω + 1 +

1

2
e−jω (62)

P (z) =
1

2
z + 1 +

1

2
z−1 (63)

and since P (z) = C(z)C(z−1) this means

C(z) =
1√
2

(1 + z−1) (64)

That is, the raised-cosine filter and the Haar filter are the same thing.
As a side note, it is interesting to ask whether filters can be orthogonal

and linear-phase. A linear-phase filter structure

{c0, c1, c2, , . . . , ±c2, ±c1, ±c0 } (65)

meaning that the impulse response is either even or odd symmetric. Clearly
the Haar filter works, it is even symmetric and hence linear-phase. For a
filter of length (L = 4) we interrogate (44) for k = 1 and find it implies

±2c0c1 = 0 (66)

13

which means that any such filter has only two identical non-zero coefficients,
and since L = 4 it means c1 = 0. Similar analysis for L = 6, 8, . . . finds the
same conclusion: c0 is the only non-zero coefficient. While this is slightly
different from the Haar filter it possesses no new richness, so we do not
pursue it: aside from L = 2 (Haar) linear-phase is out of the question if
orthogonality is desired.

5 Daubechies Filters

5.1 The Max-Flat Idea

The half-band conditions (resulting from the choice (28)) and even the
Smith-Barnwell/Mintzer choice are decent but non-unique ways to get per-
fect reconstruction and orthogonality, respectively. But even the latter
does not specify C(z), only the half-band condition that C(ω) must sat-
isfy. Daubechies came up with a set of conditions that are often thought
to give the “best” QMF. Her idea is to look for a filter that is both short
(small L) and decently frequency-selective.

5.2 The Really Technical Development

The development is rather indirect. Here goes. Consider the function

(1− y)−p =
∞∑

k=0

(
p+ k − 1

k

)
yk (67)

We will truncate this to p terms

B(y) =

p−1∑

k=0

(
p+ k − 1

k

)
yk (68)

= 1 + py +

(
p+ 1

2

)
y2 + . . .+

(
2p− 1
p− 1

)
yp−1 (69)

Now

P̃ (y) ≡ 2(1− y)pB(y) (70)

= 2(1− y)p((1− y)−p +O(yp)) (71)

= 2 +O(yp) (72)

Now, notice from (72) we have

P̃ ′(y)|y=0 = P̃ ′′(y)|y=0 = . . . = P̃ (p−1)(y)|y=0 = 0 (73)

14

and likewise we have

P̃ ′(y)|y=1 = P̃ ′′(y)|y=1 = . . . = P̃ (p−1)(y)|y=1 = 0 (74)

from (70). Similarly, from (72) we have

P̃ (0) = 2 (75)

and
P̃ (1) = 0 (76)

from (70). These are the maximum-flatness conditions: the function is flat
and very smoothly so at both y = 0 and y = 1, and decreases from “pass-
band” to “stopband” between. A notion is plotted below.

2

The development is rather indirect. Here goes. Consider the function

(1� y)�p =

1X

k=0

✓
p + k � 1

k

◆
yk (60)

We will truncate this to p terms

B(y) =

p�1X

k=0

✓
p + k � 1

k

◆
yk (61)

= 1 + py +

✓
p + 1

2

◆
y2 + . . . +

✓
2p� 1
p� 1

◆
yp�1 (62)

Now

P̃ (y) ⌘ 2(1� y)pB(y) (63)

= 2(1� y)p((1� y)�p + O(yp)) (64)

= 2 + O(yp) (65)

Now, notice from (65) that the first p� 1 derivatives of P̃ (y) at y = 0 must
be zero; and from (63) the same must be true for the first p� 1 derivatives
at y = 1. Also note that P̃ (0) = 2 from (65); and P̃ (1) = 0 from (63). This
is the maximum-flatness condition: the function is flat and very smoothly
so at both y = 0 and y = 1, and decreases from “passband” to “stopband”
between.

P̃ (y) (66)

13

1

maximally
flat

From (69) and (70) we have that P̃ (y) is a polynomial in y of degree 2p− 1.
As such, P̃ ′(y) is a polynomial in y of degree 2p− 2. And (73) and (74) tell
us what it must be:

P̃ ′(y) = Cyp−1(1− y)p−1 (77)

Since P̃ ′(y) = 0 and hence P̃ ′(1− y) = 0 as well, and since we know

(P̃ (y) + P̃ (1− y))|y=0 = P̃ (y)|y=0 + P̃ (y)|y=1 (78)

= 2 (79)

we can say
P̃ (y) + P̃ (1− y) = 2 (80)

which is looking very close to our half-band condition, except in y as opposed
to z.

15

Now substitute

y ←−
(

1− z
2

)(
1− z−1

2

)
(81)

Note

1− y =
1

4

(
4− (−z + 2− z−1)

)
(82)

=
1

4

(
2 + z + z−1

)
(83)

=

(
1 + z

2

)(
1 + z−1

2

)
(84)

So we substitute
P (z) = P̃ (y)|

y=(1−z
2)

(
1−z−1

2

) (85)

Now we have

P (z) + P (−z)
= P̃ (y)|

y=(1−z
2)

(
1−z−1

2

) + P̃ (y)|
y=(1+z

2)
(

1+z−1

2

) (86)

= P̃ (y)|
y=(1−z

2)
(

1−z−1

2

) + P̃ (1− y)|
y=(1−z

2)
(

1−z−1

2

) (87)

=
(
P̃ (y) + P̃ (1− y)

)
|
y=(1−z

2)
(

1−z−1

2

) (88)

= 2 (89)

so the half-band condition is indeed satisfied by the Daubechies filters!

5.3 How to Make a Daubechies Filter

All we need to do now is to find find one. We need to write

P̃ (y) = 2(1− y)p

(
p−1∑

k=0

(
p+ k − 1

k

)
yk

)
(90)

from (70) and (68). Then we write

P (z) = P̃ (y)|
y=(1−z

2)
(

1−z−1

2

) (91)

= 2

(
1 + z

2

)p(1 + z−1

2

)p

×
p−1∑

k=0

(
p+ k − 1

k

)(
1− z

2

)k (1− z−1

2

)k
(92)

16

from (90), (85) and (84). Finally we must use

P (z) = C(z)C(z−1) (93)

to extract C(z) from P (z).
So let’s try p = 1. From (92) we easily get

P (z) =
1

2

(
(1 + z)(1 + z−1)

)
(94)

and it is easy to apply (94) to (93) to get

C(z) =
1 + z−1

√
2

(95)

which is the Haar filter!
To show something a little more interesting, let us try p = 2. We get

P (z) =
1

8
(1 + z)2(1 + z−1)2

(
1 + 2

(
1− z

2

)(
1− z−1

2

))
(96)

=
−1

16
(1 + z)2(1 + z−1)2

(
z − 4 + z−1

)
(97)

=
−1

16(2−
√

3)
(1 + z)2(1 + z−1)2

×
(

(1− (2−
√

3)z)(1− (2−
√

3)z−1)
)

(98)

meaning that we have

C(z) =
1√
32

(
(1 +

√
3) + (3 +

√
3)z−1 + (3−

√
3)z−2 + (1−

√
3)z−3

)

(99)
This is the D4 filter.

6 Wavelets

6.1 The Telescoping Subspaces

Wavelets are the continuous-time (or -space) version of multi-resolution de-
composition. Begin with telescoping subspaces

V0 ⊂ V1 ⊂ V2 ⊂ V3 ⊂ V4 ⊂ . . . (100)

and require that if f(t) ∈ Vj then

17

1. f(t− k) ∈ Vj , ∀k ∈ I; and

2. f(2t− k) ∈ Vj+1, ∀k ∈ I.

Also assume that there is scaling function φ(t) such that for {φ(t − k)}k∈I
is a basis for V0.

f(t) g(t) f(t)	e V0

f(t)	e V1 f(t)	e V2 w(t)

An example is given above. We seek to approximate the ramp-function
g(t) (top middle) in a telescoping series of spaces that are formed by the
scaling function φ(t), top left. The approximations in V0, V1 and V2 are
shown in top right, bottom left and bottom middle, respectively. It is clear
that the deeper one gets the better the approximation. We also define the
wavelet space W0 with basis w(t) (bottom right), such that

Vj
⋃
Wj = Vj+1 (101)

and
Vj
⋂
Wj = ∅ (102)

The function w(t) is called the mother wavelet.

6.2 Relationship to Multi-Resolution Decomposition

Now, V0 ⊂ V1 means that

φ(t) =
∑

n

cnφ(2t− n) (103)

If we also have {φ(t− k)} orthogonal – and hence {φ(2t− k)} orthogonal –
we can write

cn =

∫
φ(t)φ(2t− n)dt (104)

18

Expressing the orthogonality requirement using this, we have

δ[k] =

∫
φ(t)φ(t− k)dt (105)

=

∫ (∑

m

cmφ(2t−m)

)(∑

n

cnφ(2(t− k)− n)

)
dt (106)

=
∑

n

cncn−2k (107)

It is very interesting that (107) is identical to (44) – that is, the condition
for a telescoping basis based on orthogonal functions is the same as the
condition for a multi-resolution decomposition filter to be orthogonal. Let
us go a little further, and note that since Wj ⊂ Vj+1 we can write

w(t) =
∑

k

dkφ(2t− k) (108)

where

dk =

∫
w(t)φ(2t− k)dt (109)

If we desire orthogonality of {w(t−m)} we have

δ[k] =

∫
φ(t)φ(t− k)dt (110)

=

∫ (∑

m

dkφ(2t−m)

)(∑

n

dnφ(2(t− k)− n)

)
dt (111)

=
∑

n

dndn−2k (112)

and similarly, if orthogonality of Wj to Vj is desired we have

0 =

∫
φ(t)w(t− k)dt (113)

=

∫ (∑

m

ckφ(2t−m)

)(∑

n

dnφ(2(t− k)− n)

)
dt (114)

=
∑

n

cndn−2k (115)

That is, (107), (112) & (115) – demanded for orthogonality of the telescoping
representation – are identical to (44), (46) & (45) for orthogonality of a
multi-resolution decomposition.

19

6.3 How to Make the Mother Wavelet and Scaling Function

So what are φ(t) and w(t)? The relation

φ(t) =
∑

k

ckφ(2t− k) (116)

provides the answer. Take the (continuous-time) Fourier transform

Φ(Ω) =

∫ ∞

−∞
φ(t)e−jΩtdt (117)

=

∫ ∞

−∞

(∑

k

ckφ(2t− k)

)
e−jΩtdt (118)

=
∑

k

cke
−j(Ω

2)k
∫ ∞

−∞
φ(2t− k)e−j(

Ω
2)(2t−k)dt (119)

=
1

2
C

(
Ω

2

)
Φ

(
Ω

2

)
(120)

where
C(ω) ≡

∑

k

cke
−jωk (121)

which of course repeats with period 2π. We are not interested in the factor
of 1

2 in (120) since we normalize to have unit energy; so let us drop it. We
also have for the mother wavelet

W (Ω) =
1

2
D

(
Ω

2

)
Φ

(
Ω

2

)
(122)

Note that as k → ∞ we have Ω
2k
→ 0. We arbitrarily set Φ(0) = 1 – any

non-zero constant will do – so we have

Φ(ω) =
∞∏

k=1

C
(ω

2k

)
(123)

W (ω) = D
(ω

2

) ∞∏

k=2

C
(ω

2k

)
(124)

which explicitly define the (Fourier transforms of the) scaling function and
mother wavelet in terms of chosen multi-resolution filter function.

20

6.4 Compactness of the Scaling Function andMotherWavelet

First, let us observe that (123) and (124) require that C(ω) = 0 else Φ(ω)
goes on forever. Let us also define c(t) via

C(ω) = F [c(t)] (125)

= F
[∑

k

ckδ(t− k)

]
(126)

=

∫ ∞

−∞

∑

k

ckδ(t− k)e−jωtdt (127)

=
∑

k

ckδ(t− k)e−jωk (128)

This is not especially useful except to tell is that c(t) is time-limited if {cn}
is FIR – c(t) has support only on [0, L) (actually [0, L − 1)). Then (123)
implies

φ(t) = c(2t) ? c(4t) ? c(8t) ? c(16t) ? c(32t) ? . . . (129)

meaning that the support of φ(t) can be no greater than of length

L

2
+

L

4
+

L

8
+

L

16
+ . . . = L (130)

That is, the scaling function φ(t) is supported only on [0, L) – it is compact!
The same can be said for the mother wavelet w(t).

Examples of scaling functions and wavelets for the Daubechies-2 (i.e.,
Haar) and Daubechies-4 systems are given below

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

φ(t)

w(t)

21

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

1.5

φ(t)

w(t)

What is striking is that the Haar functions are exactly what one might think,
and basically the same as in the earlier notional cartoon. The Daubechies-4
scaling function and mother wavelet are weird. But they are what they are.

22

ECE 6123
Advanced Signal Processing:

EM, HMMs and BP

Peter Willett

Fall 2017

1 Expectation-Maximization (EM)

1.1 The Algorithm and Why it Works

Suppose we have a problem in which the variables can be divided as follows:

Z: The observation – known, of course.

X: The unknown parameters that are desired.

K: Some hidden random variables.

In fact we could have X as an unknown random variable (i.e., with a prior)
but for the present discussion let’s assume it is a parameter. Our goal is to
find the maximum-likelihood estimator (MLE) of X based on Z. Now, if you
can easily write pX(Z) by all means maximize it and skip this whole section.
What we are interested in are cases in which pX(Z|K) and pX(K) can both
be written, but (with integration in the most general sense, possibly meaning
a sum)

pX(Z) =

∫
pX(Z|K)pX(K)dK (1)

is irritating and complicated to evaluate, let alone maximize.
The EM approach has two steps. We begin with some sort of guess –

and, yes, it can matter a lot – as to X0, and set n = 0.

E-step: Here we form the “Q-function”

Q(X;X(n)) ≡
∫

log (pX(Z,K)) pX(n)(K|Z)dK (2)

and the reason this is called the E-step should be obvious: it involves
an expectation, albeit of an unexpected function.

1

M-step: We maximize (yes, that’s why it’s called the M-step) and form

X(n+1) = arg max
X

{
Q(X;X(n))

}
(3)

We then increment n and return to the E-step.

The reason this works is actually pretty simple. We have

Q(X;X(n)) =

∫
log (pX(Z,K)) pX(n)(K|Z)dK (4)

=

∫
(log (pX(K|Z)) + log (pX(Z))) pX(n)(K|Z)dK (5)

= log (pX(Z)) +

∫
log (pX(K|Z)) pX(n)(K|Z)dK (6)

Now consider any two pmf’s or pdf’s q1 & q2. Noting that

ln(x) ≤ x− 1 (7)

with equality if and only if x = 1 (draw the graph!), we have∫
q1 log(q2) −

∫
q1 log(q1) =

∫
q1 log

(
q2
q1

)
(8)

≤ log(2)

∫
q1

(
q2
q1
− 1

)
(9)

≤ log(2)

∫
q1

(
q2
q1
− 1

)
(10)

= 0 (11)

This means that ∫
q1 log(q2) ≤

∫
q1 log(q1) (12)

with equality if and only if q1 = q2. Returning to (6) we see from (12) that
if

Q(X(n+1);X(n)) > Q(X(n);X(n)) (13)

then
log (pX(n+1)(Z)) > log (pX(n)(Z)) (14)

since the second term must have decreased. This means that the change
from X(n) to X(n+1) must have increased the likelihood that we are aiming
to maximize. Note that although the M-step by tradition requires a maxi-
mization, the M could also stand for majorization: all that is really required

2

for (14) is an increase in Q. There is no real need for a maximization if that
turns out to be difficult or expensive. Note also that (14) tells us clearly that
this is hill-climbing approach: there is no guarantee that a global maximum
likelihood be found.

As a final note, many authors refer to K
⋃
Z as the complete data and

Z as the incomplete data. I don’t care for the nomenclature; but there it is.

1.2 The Gaussian Mixture Example

Sometimes you need to manufacture the K’s yourself. Consider that you
have N independent zi’s from the same Gaussian mixture pdf

p(z) =
M∑
m=1

pm√
|2πR|

e−
1
2
(z−µm)TR−1(z−µm) (15)

where the mixture priors {pm} and the means {µm} are both unknown. You
could insert1 K = {ki} such that ki ∈ {1,M} and

Pr(ki = m) = pm (16)

{ki} ∼ independent and identically distributed (17)

p(zi|ki) =
1√
|2πR|

e−
1
2
(zi−µki)

TR−1(zi−µki) (18)

In the EM formalism the first thing we need is pX(n)(K|Z). This is relatively
easy:

pX(n)(K|Z) =
N∏
i=1

p(ki|Z) (19)

=

N∏
i=1

pX(n)(ki|zi) (20)

≡
N∏
i=1

wi(ki) (21)

wi(m) =
p
(n)
m pX(n)(zi|ki = m)∑M
l=1 p

(n)
l pX(n)(zi|ki = l)

(22)

=
p
(n)
m

1√
|2πR|

e−
1
2
(zi−µ

(n)
m)TR−1(zi−µ

(n)
m)

∑M
l=1 p

(n)
l

√
|2πR|e−

1
2
(zi−µ

(n)
l)TR−1(zi−µ

(n)
l)

(23)

1Actually this is the way you would generate such random variables.

3

The nomenclature involving w’s is fairly common for the posterior proba-
bilities. Now we have

Q(X;X(n)) =

∫
log (pX(Z,K)) pX(n)(K)dK (24)

=
∑
K

(
N∑
i=1

((
log(pki) −

1

2
log (|2πR|)

− 1

2
(zi − µki)

T R−1 (zi − µki)
) M∏
i=1

wi(ki)

))
(25)

=

M∑
m=1

N∑
i=1

((
log(pm) − 1

2
log (|2πR|)

− 1

2
(zi − µm)T R−1 (zi − µm)

)
wi(m)

)
(26)

Maximizing (26) over pm subject to the constraint that these prior proba-
bilities add to unity yields

∂

∂pm

(
N∑
i=1

log(pm)wi(m)− λpm

)
= 0 (27)

or

pm =

∑N
i=1wi(m)∑N

i=1

∑M
l=1wi(l)

(28)

where of course the denominator is most easily found by normalization. As
for the µm’s we take the gradient

∇

(
N∑
i=1

(
1

2
(zi − µm)T R−1 (zi − µm)

)
wi(m)

)
= 0 (29)

N∑
i=1

(
R−1 (zi − µm)

)
wi(m) = 0 (30)

or

µm =

∑N
i=1wi(m)zi∑N
i=1wi(m)

(31)

This is a nice easy recursion: Start with a guess about the µm’s and pm’s.
Then calculate the w’s according to (23). Then update the parameters
according to (28) & (31); and go back to getting new w’s. Stop when you
get tired of it – or more likely when the estimates stop moving. Note that

4

this is a “soft” version of the celebrated k-means algorithm for clustering.
It is also interesting to note that it is possible to estimate the covariance
as well, and also to allow the covariances to be different across the various
modes.

2 The Hidden Markov Model

2.1 Modeling for EM

A Markov model has

p(Z) = p(z1)

N∏
i=2

p(zi|zi−1) (32)

whereas a hidden Markov model (HMM) does not give direct access to the
Markov process:

p(Z,K) =

(
p(k1)

N∏
i=2

p(ki|ki−1)

)(
N∏
i=1

p(zi|ki)

)
(33)

A fragment of an HMM is pictured below.

ki-1 ki ki+1

zi-1 zi zi+1

I have gone out of my way to use non-standard HMM nomenclature (espe-
cially the ki’s) to emphasize the relationship to the EM algorithmic tools we
have developed. We will define X = {A,B,p} in which

A(m|n) = Pr(ki = m|ki−1 = n) (34)

B(l|n) = Pr(zi = l|ki = n) (35)

p(m) = Pr(k1 = m) (36)

These are what we seek: the M ×M matrix A and the M × L matrix B,
meaning that there are M “hidden” states and L kinds2 of outputs. And of

2There is a perfectly good formulation of the HMM that allows for continuous-valued
outputs; for simplicity of notation we will assume discreteness.

5

course this is a prime example of a problem that is absolutely panting for
EM to come solve it.

2.2 The Forward-Backward Algorithm

In this section we seek an expression for the posterior probabilities of the
state sequence. Define

α(Zi+1
1 ,m) ≡ p(Zi1, ki = m) (37)

We can write

α(Zi+1
1 ,m) =

M∑
n=1

p(zi+1, ki+1 = m, ki = n,Zi1) (38)

=
M∑
n=1

p(zi+1, ki+1 = m|ki = n,Zi1)

× Pr(ki = n,Zi1) (39)

=

M∑
n=1

p(zi+1|ki+1 = m,Zi1, ki = n)

× Pr(ki+1 = m|Zi1, ki = n)Pr(ki = n,Zi1) (40)

=
M∑
n=1

p(zi+1|ki+1 = m)

× Pr(ki+1 = m|ki = n)Pr(ki = n,Zi1) (41)

=

M∑
n=1

B(zi+1|m)A(m|n)α(Zi1, n) (42)

which is a nice recursive formula for α(·|·) when initialized with

α(Z1
1,m) = Pr(z1, ki = m) (43)

=
B(z1|m)p(m)∑M
l=1B(z1|l)p(l)

(44)

This is the forward part of the forward-backward algorithm. Notice that if
all we wanted was what amounted to a filter – that is, we want the posterior
probability p(ki = m|Zi1) – then all we need to do is one single “forward”
pass and normalize the sum over m of the α(ZN1 ,m)’s to be unity. Similarly,
If what we wanted was just p(Zi1) – that would give us the likelihood that
we might use to test if the model is correct – then all we need do is sum

6

α(ZN1 ,m) over m to marginalize that out. That is, in either of these cases
we would be done. However, in order to estimate the model we require
detailed information about pX(n)(K|Z); for that we need the backward pass.
However, similar to the Kalman Smoother3 all that is needed is one forward
and one backward sweep 4 per iteration.

Similarly, define

β(ZNi+1,m) ≡ p(ZNi+1|ki = m) (45)

We can write

β(ZNi ,m) = p(ZNi |ki−1 = m) (46)

=
M∑
n=1

p(ZNi+1, zi, ki = n|ki−1 = m) (47)

=
M∑
n=1

p(ZNi+1|zi, ki = n, ki−1 = m)

× p(zi|ki = n, ki−1 = m)

× Pr(ki = n|ki−1 = m) (48)

=

M∑
n=1

Pr(ZNi+1|ki = n)p(zi|ki = n)

× Pr(ki = n|ki−1 = m) (49)

=

M∑
n=1

β(ZNi+1, n)B(zi|n)A(n|m) (50)

which is a nice recursive formula for β(·|·) when initialized with

β(ZNN+1,m) =
1

N
(51)

This is the backward part of the forward-backward algorithm. It is typical to
scale both forward and backward directions, since underflow often results.

One key fact that is especially interesting is that these quantities give us

3Actually there is a nice alternative derivation of the Kalman Smoother that is exactly
Baum-Welch.

4In the EM (or Baum-Welch) algorithm the estimates for X(n) = {A,B,p} change
each iteration. Naturally, therefore, each iteration requires a new forward and backward
sweep to determine the requisite pX(n)(K|Z).

7

the marginal probabilities for state occupancies. That is,

Pr(ki = m|ZN1) ∝ p(ki = m,ZN1) (52)

= p(Zi1,Z
N
i+1, ki = m) (53)

= p(ZNi+1|Zi1, ki = m)p(Zi1|ki = m) (54)

= p(ZNi+1|ki = m)p(Zi1|ki = m) (55)

= β(ZNi+1|ki = m)α(Zi1|ki = m) (56)

and normalizing (56) to sum to unity is obvious. We also see from (52) that
we can write

p(ZN1) =
M∑
m=1

p(ki = m,ZN1) (57)

=
M∑
m=1

β(ZNi+1|ki = m)α(Zi1|ki = m) (58)

which, interestingly, does not depend5 on i. This is the likelihood of the
whole sequence given the model, and can be useful for model testing.

Now we’ll need

w1(m) ≡ PrX(n)(ki = m|Z) (59)

= β(ZN2 |ki = m)α(Z1
1|ki = m) (60)

from (56). We’ll also need

p(ki−1 = n, ki = m|ZN1) ∝ p(ki−1 = n, ki = m,ZN1) (61)

= p(Zi−11 , zi,Z
N
i+1, ki−1 = n, ki = m) (62)

= p(ZNi+1|Zi−11 , zi, ki−1 = n, ki = m)

× p(zi|Zi−11 , ki−1 = n, ki = m)

× p(ki = m|Zi−11 , ki−1 = n)

× p(Zi−11 , ki−1 = n) (63)

= p(ZNi+1|ki = m)p(zi|, ki = m)

× p(ki = m|ki−1 = n)

× p(Zi−11 , ki−1 = n) (64)

= β(ZNi+1|m)B(zi|m)A(m|n)α(Zi−11 , n) (65)

5In fact the solution is the same for every i.

8

Finally, we’ll need

p(ki = m, zi = n|ZN1) ∝ p(ki = m,ZN1)I(zi = n) (66)

= p(ZNi+1|ki = m)p(ki = m,Zi1)

× I(zi = n) (67)

= β(ZNi+1|m)α(Zi1,m)I(zi = n) (68)

And now we are ready to apply EM.

2.3 The Baum-Welch Algorithm

The Baum-Welch “re-estimation” algorithm was designed to estimate the
parameters of an HMM based on one or preferably many sets of observa-
tions. The notation below assumes a single time series observation, but
the extension to multiple observation sequences is obvious – and indeed es-
timation of the initial probability will be pretty poor if there is only one
times-series observation, since there is only one exemplar. Note that there
is no stipulation that the underlying Markov model be in “steady-state” –
Baum-Welch works fine for non-stationary HMMs. The Baum-Welch pro-
cedure was discovered independently of EM; but it was later noted that it
was exactly the EM algorithm applied to an HMM.

We begin by inserting (33) to (2). We have

Q(X;X(n)) =

∫
log (pX(Z,K)) pX(n)(K|Z)dK (69)

=
∑
K

((
log(p(k1)) +

N∑
i=2

log (A(ki|ki−1))

+

N∑
i=1

log (B(zi|ki))

)
pX(n)(K|Z)

)
(70)

Maximizing the Q-function over all these is quite simple; the only “subtlety”
(and it isn’t very subtle, really) is that we have to apply the Lagrange
constraint that all probabilities sum to unity. We get

p(m) = w1(m) (71)

using (60). We also have

A(m|n) = κA(·|n)

N∑
i=2

p(ki−1 = n, ki = m|ZN1) (72)

9

where the probabilities are from (65) and κA(·|n) is such that

M∑
m=1

A(m|n) = 1 (73)

is normalized. Finally, we get

B(l|m) = κB(·|m)

N∑
i=1

p(ki = m, zi = n|ZN1) (74)

where the probabilities are from (68) and κB(·|m) is such that

L∑
l=1

B(l|m) = 1 (75)

is normalized. Baum-Welch says keep doing this iteration until convergence.

10

ECE 6123
Advanced Signal Processing:
Compressive Sensing and

Sparseness

Peter Willett

Fall 2017

1 Sparse Representations

Why do image processors transform an image – via multi-resolution (wavelet)
transform, discrete Fourier transform (2D-DFT) or its variant the discrete
cosine transform (DCT) – prior to coding it for data compaction? It seems
fairly intuitive: while in the original (image) domain the energy is distributed
evenly amongst all pixels, in the transform domain this is no longer true. For
example, it is common to find most of the energy in low spatial frequency
components (larger image objects) and much less at higher frequencies (fine
detail); and it makes sense to expend many bits to quantize the former and
rather fewer to deal with the latter. In fact, inverse water-filling from rate-
distortion arguments in information theory tell us to do exactly that, and
even to ignore completely (no bits at all) components that are smaller than
some threshold.

Taken to its limit, this describes a representation that is sparse. We may
wish to write

x = As + e (1)

in which x is the observation vector1 of dimension M × 1, A is an a-priori
fixed “dictionary” matrix2 of dimension M × N (generally M � N), s
is a vector of dimension N × 1 that contains only S (S � M) non-zero
elements and e is a small “noise” vector to account for the inaccuracy in
the representation. This is clearly quite appealing: to code (approximately,
anyway) the data vector x all we need is a few (S) elements of s, since
presumably the de-coder already knows A.

1This is not quite a correct thing to write in all cases, but wait for Compressive Sensing
to go into more detail.

2This is an over-complete dictionary: there are more columns of A than should be nec-
essary to span the space, meaning that these columns are necessarily linearly dependent.

1

So how do we do this? Let’s begin by considering the problem

min
s
{‖s‖2} such that ‖x−As‖2 ≤ ε (2)

in which ‖·‖2 refers to the Euclidean distance (2-norm). With a few Lagrange
multipliers and use of the Woodbury formula we have

s = (ATA + λI)−1ATx (3)

where ∥∥(I + λ−1AAT)−1x
∥∥
2

= ε (4)

solves implicitly for λ. This is complicated and not what we want anyway –
the point in showing it is to demonstrate that there will be no special sparsity
associated with the problem, since s will in general be fully populated. A
real sparse solution is found from

min
s
{‖s‖0} such that ‖x−As‖2 ≤ ε (5)

where the 0-norm is the number of non-zero elements. The problem with this
solution is that in general one may need to test each of the 2N combinations
of non-zero elements of s, and that is clearly not an option for computational
reasons. Actually you can do OK with a greedy algorithm, that amounts
to finding the best column of A, then next-best, and so on: this is called
matching-pursuit (MP) and has complexity O(MS). A variant of MP that
works a little better is orthogonal matching pursuit (OMP): after a new
column of A is discovered all non-zero coefficients in the set so far discovered
are re-computed. This reduces the error somewhat, and the complexity
remains approximately the same.

However, researchers have found that an in-between solution is perhaps
preferable. Consider the problem

min
s

{
‖s‖p

}
such that x = As (6)

where of course

‖s‖p =

(
M∑

m=1

|s[m]|p
) 1

p

(7)

This assumes that an exact solution (not necessarily sparse) exists, but the
notion suggests the following cartoon.

2

2-norm	criterion

s1

s2

locus	of	points	where	x=As

1-norm	criterion

s1

s2

locus	of	points	where	x=As

On the left is what we have with p = 2 – minimizing the standard Eu-
clidean norm does not encourage a sparse solution. On the right is the L1

(“Manhattan distance”) norm, and it is seen that a sparse solution is indeed
the most likely result, since it will be at a “corner” of the constraint set.
Actually a reformulation of (6) is what is actually posed:

min
s

{
‖x−As‖22

}
such that ‖s‖1 ≤ ε (8)

where

‖s‖1 =

M∑
m=1

|s[m]| (9)

Problem (8) is solved iteratively by a classical subgradient technique from
statistics, and is called Least Absolute Shrinkage and Selection Operator
(LASSO). And there seems to be some success with (6) using p = 0.5.

2 Compressive Sensing

Consider a communications application in which the channel is being probed.
The channel is made up of multiple paths, such that

h[n] =

K∑
k=1

αkδ[n− nk] (10)

and it is assumed here that the sampling rate is high enough that Nyquist
rate sampling can incorporate all possible delays – hence we use discrete
time to represent it. Naturally, you want to characterize the channel. One

3

approach is simply to measure h[n] – perhaps by inserting a very narrow
pulse – and to look for peaks. One may need a lot of samples.

Another approach would be to apply a sinusoid of frequency ω1; one
observes

H(ω1) =

K∑
k=1

αke
−jω1tk (11)

If one applies another sinusoid of frequency ω2 one observes H(ω2); and so
on. Notice that all paths {αk, tk} contribute to all observations; and that
one really needs only L ≥ K probing frequencies in order to have enough
information to characterize the channel. Notice that we can write

L frequencies




H(ω1)
H(ω2)

...
H(ωL)

 =


e−jω10 e−jω1 e−jω12 . . . e−jω1(N−1)

e−jω20 e−jω2 e−jω22 . . . e−jω2(N−1)

...
...

...
. . .

...

e−jωL0 e−jωL e−jωL2 . . . e−jωL(N−1)


︸ ︷︷ ︸

N samples = N possible paths



0
...
0
α1

0
...
0
α2

0
...



(12)

where the vector on the RHS is clearly sparse: we could write (12) as (1) with
e = 0 and the nth column of the dictionary matrix containing the response
of a path at time sample n to the various probing frequencies. Notice how
many fewer samples (channel-probings) are needed.

At a somewhat more abstract level what we have done is to posit that
we have

x = As (13)

with a sparse s, but that in fact we observe

y = Bx (14)

meaning that we have
y = Cs (15)

4

where
C = BA (16)

In the channel-probing example just given, x is the impulse response, which
we do not know but would like to know. The sparse vector s is made up
of mostly 0’s but also the α’s in the appropriate locations. These locations
are delayed impulses, meaning that the ith column of A is really just an
impulse at the ith delay – that is, it is δ[n − ni], where n increments down
the column. We do not observe x directly, of course; instead we observe Bx
which is the response of the impulse response at a particular frequency (see
(12)). We observe this at several frequencies; that is, we observe y which is
made up of H(ω)’s.

B

x

=yL

M

= B

M A

N

s
= C

s

The notional figure is as above. The figure assumes that N � M but this
need not be true and we could have N quite large – in that case the matrix
C would be “fat.”

The above figure leads us to the rather interesting idea of the “single-
pixel” camera. In the digital communications notional example the columns
of C – the dictionary that we are trying to build our response from – is
constructed carefully. That is, each column corresponds to the response
that we would observe at the frequencies probed for a specific delay. But
indeed much of the more recent success of such compressive sensing has come
via columns that are designed haphazardly – using Matlab’s randnormal
function, for example.

Suppose that each row of B represents a pseudo-random photographic
mask, and the corresponding element in the observation vector y is the
amount of light received at the single pixel (a photo-diode?) as the true
image x is applied to the mask. The matrix A can be anything, and often is
assumed itself to be random. The after solving the sparse problem y = Cs
the resultant vector s is applied to the dictionary matrix A to render an
approximation to the actual image x. It seems to work quite well.

5

Please see the figure below, taken from “Compressive Sensing” by R.
Baraniuk, IEEE Signal Processing Magazine, pp. 118-124, July 2007.

[lecture NOTES] continued

can exactly recover K-sparse signals and
closely approximate compressible signals
with high probability using only
M ≥ cK log(N/K) iid Gaussian meas-
urements [1], [2]. This is a convex opti-
mization problem that conveniently
reduces to a linear program known as
basis pursuit [1], [2] whose computation-
al complexity is about O(N3). Other,
related reconstruction algorithms are
proposed in [6] and [7].

DISCUSSION
The geometry of the compressive sensing
problem in RN helps visualize why ℓ2
reconstruction fails to find the sparse
solution that can be identified by ℓ1
reconstruction. The set of all K-sparse
vectors s in RN is a highly nonlinear
space consisting of all K-dimensional
hyperplanes that are aligned with the
coordinate axes as shown in Figure 2(a).
The translated null space H = N (") + s
is oriented at a random angle due to the
randomness in the matrix " as shown in
Figure 2(b). (In practice N, M, K ≫ 3, so
any intuition based on three dimensions
may be misleading.) The ℓ2 minimizer ̂s
from (4) is the point on H closest to the
origin. This point can be found by blow-
ing up a hypersphere (the ℓ2 ball) until it
contacts H. Due to the random orienta-
tion of H, the closest point ̂s will live
away from the coordinate axes with high
probability and hence will be neither
sparse nor close to the correct answer s.
In contrast, the ℓ1 ball in Figure 2(c) has
points aligned with the coordinate axes.
Therefore, when the ℓ1 ball is blown up,
it will first contact the translated null
space H at a point near the coordinate
axes, which is precisely where the sparse
vector s is located.

While the focus here has been on dis-
crete-time signals x, compressive sensing
also applies to sparse or compressible
analog signals x(t) that can be represent-
ed or approximated using only K out of
N possible elements from a continuous
basis or dictionary {ψi(t)}N

i =1 . While
each ψi(t) may have large bandwidth
(and thus a high Nyquist rate), the signal
x(t) has only K degrees of freedom and
thus can be measured at a much lower
rate [8], [9].

PRACTICAL EXAMPLE
As a practical example, consider a sin-
gle-pixel, compressive digital camera
that directly acquires M random linear
measurements without first collecting
the N pixel values [10]. As illustrated in
Figure 3(a), the incident light-field cor-
responding to the desired image x is
reflected off a digital micromirror device
(DMD) consisting of an array of N tiny
mirrors. (DMDs are present in many
computer projectors and projection tele-
visions.) The reflected light is then col-
lected by a second lens and focused onto
a single photodiode (the single pixel).

Each mirror can be independently ori-
ented either towards the photodiode
(corresponding to a 1) or away from the
photodiode (corresponding to a 0). To
collect measurements, a random number
generator (RNG) sets the mirror orienta-
tions in a pseudorandom 1/0 pattern to
create the measurement vector φ j. The
voltage at the photodiode then equals yj,
which is the inner product between φ j
and the desired image x. The process is
repeated M times to obtain all of the
entries in y.

[FIG2] (a) The subspaces containing two sparse vectors in R3 lie close to the
coordinate axes. (b) Visualization of the ℓ2 minimization (5) that finds the non-
sparse point-of-contact ̂s between the ℓ2 ball (hypersphere, in red) and the
translated measurement matrix null space (in green). (c) Visualization of the ℓ1
minimization solution that finds the sparse point-of-contact ̂s with high probability
thanks to the pointiness of the ℓ1 ball.

S

(a) (b) (c)

S

S

HH

S

S

[FIG3] (a) Single-pixel, compressive sensing camera. (b) Conventional digital camera
image of a soccer ball. (c) 64 × 64 black-and-white image ̂x of the same ball (N = 4,096
pixels) recovered from M = 1,600 random measurements taken by the camera in (a).
The images in (b) and (c) are not meant to be aligned.

(a)

(b) (c)

Scene

Photodiode

DMD
Array RNG

A/D
Bitstream

Reconstruction Image

(continued on page 124)

IEEE SIGNAL PROCESSING MAGAZINE [120] JULY 2007

In order that this work we need to make sure that we have the correct
sparse vector s of sparseness S. Suppose that we have y = Cs1 and y = Cs2
for d = (s1− s2) 6= 0. Then we know that Cd = 0 which implies that there
is some group of 2S columns of C that are linearly dependent. To avoid
this, we must insist that all such collections of 2S columns of C be linearly-
independent. This amounts to the (more complicated) restricted isometry
property (RIP) that gives fairly exact results.

6

