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1 Basics

1.1 Notional Detection: A Known Additive Signal

Although we will be dealing in discrete time for the most part, let us begin
by considering that we have a continuous-time model in which r(t) is the
received signal and that we are trying to decide between

r(t) = ⌫(t) (1)

and
r(t) = s(t) + ⌫(t) (2)

in which s(t) is a known signal, ⌫(t) is a noise process with known statistics,
and the observation time is 0  t  Tp. This is vastly over-simplified, since:

• there is no reason to assume that the signal has a known shape;

• even if the signal has a known shape, if may have unknown parameters
like amplitude and phase;

• the noise process is in general unknown, for example we may know
that it is additive white and Gaussian but may now know its power
spectral density;

• many problems do not have a specific starting and ending time of their
observation intervals; and

• in any case this “ signal plus noise” problem is far too restrictive.

Nonetheless this is a reasonable place to anchor our intuition. And as for
the “known-signal” and “specific time” aspects, let us assume that we have
an active observation system (radar or sonar) in which a waveform p(t) was
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Figure 1: Top row is signal of (4). Middle and bottom rows are correspond-
ing received signals, in cases of moderate and high noise, respectively.

transmitted and s(t) = p(t� t0), in which t0 is a suitable time to wait for a
return from a target a certain distance away1.

Suppose you knew that

p(t) = At cos(2⇡fct) (3)

meaning that
s(t) = Ar cos(2⇡fc(t� t0)) (4)

is to be tested for. The top row of figure 1 is what we would expect to
see without noise, and the middle and bottom rows are what we might see
with moderate and high noise levels, respectively. A fairly obvious strategy
would be to form

T (r) ⌘

Z
Tp

0
r(t)s(t)dt (5)

and see how big T (r) is. And in fact this turns out to be optimal when ⌫(t)
is Gaussian: it makes sense to compare what you have to the “template”
that you expect to have, and the inner-product (integral) is a good way to
perform this comparison.

In fact (5) is optimal regardless of Ar, which is nice. What is less nice
is that (5) is in general not optimal (or even very good!) when ⌫(t) is not
Gaussian. And if we got the delay t0 wrong (5) could be very poor indeed.
Consider that we actually receive

r(t) = Ar cos(2⇡fc(t� t
0
0)) + ⌫(t) (6)

= Ar cos(2⇡fc(t� t0) + ✓) + ⌫(t) (7)

1
One may also consider that there be multiple copies of this observation system attuned

to di↵erent distances: these would be resolution cells.
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in which ✓ = ⇡/2: the output of (5) is pretty much the same regardless of the
presence or absence of signal, since cos(2⇡fc(t�t0)+⇡/2) = sin(2⇡fc(t�t0))
and Z

Tp

0
cos(2⇡fc(t� t0) sin(2⇡fc(t� t0))dt ⇡ 0 (8)

If ✓ = ⇡ the situation is correspondingly worse.

1.2 A Di↵erent Example

Suppose someone has complained to you that dice in a casino are not fair:
while actually each face should arise with probability 1/6, the claim is that
the dice are weighted such that 3 and 4 have probability 1/4. That would
increase the number of 7’s that get rolled.

Suppose you roll the pairs of dice n = 25 times to test.

Test 1: Since the concern is the number of 7’s, count the number of 7’s.
Report unfairness if that number is too large.

Test 2: Count the number of 3’s and 4’s, and report unfairness if that
number is too large.

Actually these tests both work; but let’s see how they do.
We start with Test #2. If the dice are fair, the probability of a 7 is 1

6
or 16

96 . If they are unfair, that probability rises to 18
96 . The observed number

of 7’s is distributed binomially in either case. And it’s simple to show that
if a desired probability of false alarm (that is, of saying the dice are unfair
when they are actually fair) is 10%, then the threshold at which unfairness
is reported is seven (i.e., if more than seven 7’s are observed, you declare
that there is cheating going on; otherwise you placate that the game is fair).
And if you use this threshold you find that the “probability of detection” –
that is, the probability of declaring unfair dice when they are in fact unfair
– is about 17%. This isn’t good: Test #1 misses most of the cheating.

As for Test #2, we can see that the probability of getting either a 3 or 4 is
either 1

3 or 1
2 . Again using the binomial probability we find the threshold for

10% probability of false alarm is 22 (out of 2n = 50. And the corresponding
probability of detection is about 84%. This is a pretty good test.

So we see that although Test #1 is not completely useless, it really should
not be used if Test #2 is available. The reason that Test #1 is not good
is that one made an assumption that since 7’s were important we should
count them. That is, we did not go back to first principles and make clear
our model. In doing so we lost valuable information that the observation
stream was trying to tell us.
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2 Formalization

2.1 Nomenclature

In this course we are interested in deciding between two hypotheses: the
null hypothesis H versus the alternative K. Sometimes these are denoted H0

& H1 – in fact this would make more sense, but since it would require us to
carry along a lot of subscripts we will generally work with H & K. Formally
we use f(x|✓) to denote the probability density (pdf) of the observation x,
with the understanding that if the observation is discrete f(·) may actually
be a probability mass function (pmf), and that the observation x can be
a scalar, a vector, a time function . . . or really anything to which we can
assign a probability structure.

We note the appearance of the parameter2 ✓. Let us assume that ✓ 2 ⇥H

or ✓ 2 ⇥K – these two sets are exhaustive and mutually exclusive. Then we
have the testing problem

H : x ⇠ f(x|✓) ✓ 2 ⇥H

K : x ⇠ f(x|✓) ✓ 2 ⇥K (9)

For example, we might have

f(x|✓) =
nY

i=1

1
p
2⇡

e
� (xi�✓)2

2 (10)

and ⇥H = {0} while ⇥K = {1} to indicate a test between {xi}
n

i=1 being
distributed as iid unit Gaussian with mean zero versus mean unity. Alter-
natively, we might have

f(x|✓) =
nY

i=1

✓
xi(1� ✓)1�xi (11)

and ⇥H = {
1
6} while ⇥K = {

3
16} to indicate a test for Bernoulli xi to be

unity with probability 1
6 versus 3

16 .
Note that both of these examples have both ⇥H and ⇥K singletons. Such

tests are called simple hypothesis tests, and simple tests are what we will
now study. If either one (⇥H or ⇥K) is a set with more than a single element,
the test is composite. For example, we could have ⇥K = {x : x > 0} in (10)
– very easy – or ⇥K = {

1
16 ,

3
16} in (11) – more problematic.

2
Despite the appearance of the vertical bar in f(x|✓) this is intended only to indicate

parametrization.
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Figure 2: Notional illustration of the three “decision regions” that define
the test.

Suppose also that we partition the observation space ⌦ (x 2 ⌦) into
three exhaustive and disjoint regions ⌦H , ⌦K and ⌦r as in Figure 2. These
are actually not necessary for us, but they are intuitive. The real action is
that we define the partition function

�(x) =

8
><

>:

1 x 2 ⌦K

r(x) x 2 ⌦r

0 x 2 ⌦H

(12)

in which 0  r(x)  1. Finally we construct the decision d(x) 2 {H,K} as

Pr(d(x) = K) = �(x) (13)

That is, if x 2 ⌦H we decide for H and i↵ x 2 ⌦K we decide for K; i↵ x 2 ⌦H

we “flip a coin” (with probability of a head given by r(x)) and decide for K
according to that. This is called randomization, and we will see why it is
sometimes necessary.

2.2 What is a Good Test?

2.2.1 Performance to a Statistician

Before we design an optimal test, we need to be clear on what optimal means.
One appealing choice is to minimize the probability of error in the decision.
Some thought reveals that to do so requires prior probabilities on H and K;
so if we are going this route we may as well also allow for costs of errors
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to be di↵erent. That is, declaring an emergency (like an imminent airplane
crash) when there is none is costly in terms of the emergency response; but
it may be far less costly than failing to alert of an emergency situation and
thereby failing to respond quickly to it. Such testing is called Bayesian, and
we will look at it soon.

In many situations no reasonable prior probabilities are available: really,
what is the probability of an airplane crash on a certain day? Therefore we
will here discuss the Neyman-Pearson formulation of detection, in which the
goal is to maximize the probability of true detection (i.e., Pr(d(x) = K|K))
subject to a constraint on false-alarm rate (Pr(d(x) = K|H)  ↵d).

It is convenient to define the power function of the test � as

p(✓|�) ⌘

Z
�(x)f(x|✓) (14)

in which the integral3 is over all possible observations x. In the simple
hypothesis testing situation4 we have

p(✓H |�) ⌘ Pr(d(x) = K|H)

= the false alarm rate

= Pfa

= ↵

= the size of the test

= the probability of type-I error (15)

and

p(✓K |�) ⌘ Pr(d(x) = K|K)

= the detection probability

= Pd

= �

= the power of the test

= 1� (the probability of type-II error) (16)

A good test has large � and small ↵.

3
Integration is defined in its most general sense. It could be normal Riemann integra-

tion; but it might also a sum, or even a Lebesgue integral.
4
We note that some (especially statisticians) refer to p(✓K |�) as 1 � �, versus the

definition of � that we will use.
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2.2.2 Performance to a Social Scientist

Perhaps this is a making excuses, but probably because they report exper-
imental results that are not really modeled, social scientists prefer not to
discuss type-I nor type-II errors. Social scientists generally do have labeled
data, however: they know what the true category of each experiment was
(sick or well; flora or fauna) and they know what their test selected. At any
rate, social scientists use precision and recall. These are defined as

precision ⌘
true positive

true positive + false positive
(17)

recall ⌘
true positive

true positive + false negative
(18)

These correspond somewhat nicely to what one might see when one is basing
one’s performance metrics on a finite set of experimental outcomes. In these,
define

nHH = number times H declared and H true (19)

nHK = number times H declared and K true (20)

nKH = number times K declared and H true (21)

nKK = number times K declared and K true (22)

Then we could equivalently write

precision ⌘
nKK

nKH + nKK

(23)

recall ⌘
nKK

nHK + nKK

(24)

In order to relate these to our statistical viewpoint – which amounts to
discarding the idea of a finite sample of experimental outcomes and instead
thinking about asymptotic results – we need to define priors: ⇡H & ⇡K are
the prior probabilities of the two hypotheses. As such, we could write

precision ⌘
�⇡K

�⇡K + ↵⇡H
(25)

recall ⌘
�⇡K

�⇡K + (1� �)⇡H
(26)

Personally I find these quantities far more di�cult to interpret and use. But
there they are.
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2.3 The Neyman-Pearson Lemma

The Lemma states that the optimal test, in the sense of maximizing p(✓K |�)
given a constraint on p(✓H |�)  ↵d uses

�(x) =

8
><

>:

1 f(x|✓K) > tf(x|✓H)
r(x) f(x|✓K) = tf(x|✓H)
0 f(x|✓K) < tf(x|✓H)

(27)

where the function r(x) and the scalar threshold t are chosen by the con-
straint.

To show this, write
Z
�(x)f(x|✓H) = ↵0  ↵d (28)

and hence for fixed t

� =
Z
�(x)f(x|✓K) (29)

=
Z
�(x)f(x|✓K) + t


↵0 �

Z
�(x)f(x|✓H)

�
(30)

= t↵0 +
Z
�(x) [f(x|✓K)� tf(x|✓H)] (31)

The first term is fixed. The second term tells us that � should be unity when
the di↵erence in brackets is positive, and zero when negative. It also tells us
that what value � takes on when the di↵erence in brackets is zero does not
matter in the sense that the contribution of the second term to � is null.
However, if we can choose r(x) to increase ↵0 up to ↵d in (28) we increase
the term t↵0 in (31). The way that r(x) chosen to satisfy this constraint
does not matter: one could choose r(x) = r and simple flip a coin; or one
could select some region of the set x such that f(x|✓K) = tf(x|✓H) that will
join ⌦K via a binary r(x).

3 The LR and ROC

3.1 The Likelihood Ratio

3.1.1 What It Is

Clearly we have that

{f(x|✓K) > tf(x|✓H)} i↵
⇢
f(x|✓K)

f(x|✓H)
> t

�
(32)
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b is integral

Figure 3: The pdf ’s of the LR under the two hypotheses. The shaded region
indicates the integration of f(x|✓H) to get ↵; the corresponding integral of
f(x|✓HK) yields �.

where we for convenience define the likelihood ratio (LR)

L(x) ⌘
f(x|✓K)

f(x|✓H)
(33)

It is important to recognize that if we have any monotone-increasing function
h(L), then we can also write

{L(x) > t} i↵ {h(L(x)) > h(t)} (34)

and this may be much simpler. For example, in (10) with ⇥H = {0} while
⇥K = {1} we have

L(x) =

Q
n

i=1
1p
2⇡
e
� (xi�1)2

2

Q
n

i=1
1p
2⇡
e
�

x
2
i

2

(35)

= exp

 
nX

i=1

xi �
n

2

!

(36)

meaning that if we choose

h(L) =
1

n
log(L) +

1

2
(37)

(which is certainly monotone-increasing) we find the test is simply of the
empirical mean versus a threshold. Likewise, in (11) with ⇥H = {

1
6} while
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⇥K = {
3
16} we have

L(x) =

Q
n

i=1

⇣
3
16

⌘
xi
⇣
13
16

⌘1�xi

Q
n

i=1

⇣
1
6

⌘
xi
⇣
5
6

⌘1�xi
(38)

=
✓
78

80

◆
n
✓
15

13

◆Pn

i=1
xi

(39)

meaning that once again with a logarithm and constant we simply need
to count up the number of times xi is unity. Using a logarithm is quite
common, and hence we often refer to the log likelihood ratio (LLR).

3.1.2 Su�ciency of the Likelihood Ratio

As you know, a statistic that contains all that is needed to be known with
respect to estimation of a parameter is call su�cient5; for example, it can
be shown that the empirical average is su�cient for calculation of the mean
of a Gaussian. More formally, given an observation x and a parameter  , a
statistic T (x) is called su�cient for  if fX(x|T (x) = t) does not involve  .

A simple way to check for this is via the factorization theorem – which is
almost just a restatement of the definition – that says that T (x) is su�cient
for  if and only if

fX(x| ) = g(T (x)| )h(x) (40)

where g & h are some functions. The “If” part can be see by assuming the
factorization can be made and writing

fT (t| ) =
Z

x:T (x)=t

fX(x| ) (41)

=
Z

x:T (x)=t

g(T (x)| )h(x) (42)

= g(T (x)| )
Z

x:T (x)=t

h(x) (43)

which implies

fX(x|T (x) = t, ) =
fX,T (x, t| )

fT (t, )
(44)

=
g(T (x)| )h(x)

g(T (x)| )
R
x:T (x)=t

h(x)
(45)

=
h(x)R

x:T (x)=t
h(x)

(46)

5
Su�ciency means that you might as well throw away the original observations: they

give you nothing that you don’t already have if you know the su�cient statistic.
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where the RHS involves only x. The “Only if” part follows from assuming
su�ciency and writing

fX(x| ) = fX, T (x, t| ) (47)

= fX(x|t, )fT (t| ) (48)

= h(x)g(T (x), ) (49)

where the fist line follows from the fact that T (x) is deterministic given x.
For us in this course, the parameter  is the hypothesis:  2 {H,K}.

Now consider that we have

fX(x| ) = fX(x|H)

(
L(x)  = K

1  = H
(50)

= h(x)g(L(x), ) (51)

meaning that the likelihood ratio is su�cient for testing. This is, perhaps,
not surprising.

3.1.3 Invariance of the Likelihood Ratio

Suppose we write

fL(l|K) =
Z

x:L(x)=l

fX(x|K) (52)

=
Z

x:L(x)=l

lfX(x|H) (53)

= l

Z

x:L(x)=l

fX(x|H) (54)

= lfL(l|H) (55)

meaning that we can write

fL(l|K)

fL(l|H)
= l (56)

This can be interpreted as meaning that the likelihood of the likelihood ratio
is the likelihood ratio. This is not surprising given su�ciency, which implies
that the LR contains all the relevant information in the data: we should not
expect to wring any more information out of it by posing a new hypothesis
test based on the LR.

One implication is that we can always write

fL(l|K) = lfL(l|H) (57)
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which can be of use when computing performance, since really only one of
{fL(l|H), fL(l|K)} needs to be computed. And we know that for any pdf of
L that has mass only on positive values and has mean unity (E{L} = 1),
this can describe some test via its LR pdf .

We also know that an optimal test compares L(x) to a threshold t. We
can write

↵ =
Z 1

t

fL(l|H) (58)

� =
Z 1

t

fL(l|K) (59)

We thus have

d�

d↵
=

⇣
d�

dt

⌘

⇣
d↵

dt

⌘ (60)

=
fL(t|K)

fL(t|H)
(61)

= t (62)

The use of this will be apparent in the next subsection.

a

b

1

1

t=0

t=∞

Figure 4: The receiver operating characteristic. The arrows indicate the
direction one travels as t increases, see Figure 3.

3.2 The Receiver Operating Characteristic

Now that we know the form of the optimal test, how do we choose this
unknown threshold t? In fact, it can be chosen by integration of the LR

12



pdf as shown in Figure 3. This can, in some cases, be di�cult. However,
exploring the integrals in Figure 3 and varying t allows us to trace out a
performance curve of � versus ↵, as shown in Figure 4. Note that the upper
left is desirable; and that no test can be below the diagonal, since the line
� = ↵ corresponds to a coin flip that ignores the observation. Figure 4 is
known as the receiver operating characteristic, more commonly the ROC.

The last likelihood ratio fact from the previous subsection provides us
with nice insight: the derivative of the optimal ROC is always equal to the
threshold used by the (untransformed!) LR. The ROC point furthest to the
upper-left – which is graphically-appealing but may not match the false-
alarm rate needs – is associated with unity LR threshold (t = 1). We also
see that if the LR has support over all L the ROC slope begins as 1 (lower-
left) and eventually becomes 0 (upper right). If, for example, the maximum
LR possible is 10, then the maximum ROC slope is likewise 10.

3.3 Randomization

The role of randomization – ⌦r, or �(x) = r(x) in the Neyman-Pearson
Lemma – is probably surprising. Certainly we can see that if the LR contains
no point masses (has a density) then there is no reason to consider it. An
example where randomization can be ignored is the Gaussian shift-in-mean
case (10); and example where it can’t is the dice problem (represented by
Bernoulli random variables) in (11).

Let us consider three tests such that

�1(x) =

(
1 L(x) > t

0 L(x)  t
(63)

�2(x) =

8
><

>:

1 L(x) > t

r(x) L(x) = t

0 L(x) < t

(64)

�3(x) =

(
1 L(x) � t

0 L(x) < t
(65)

such that

p(✓H |�1) = ↵1 < p(✓H |�2) = ↵2 = ↵d < p(✓H |�3) = ↵3 (66)

Note that r(x) has been chosen to satisfy the false-alarm rate requirement
exactly, and that �1(x) is too conservative with false-alarms. Clearly the
test using �3(x) is unacceptable; let’s ignore it from now on. Now we have

p(✓K |�2) =
Z

x:L(x)=t

r(x)fX(x|✓K) +
Z

x:L(x)>t

fX(x|✓K) (67)
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=
Z

x:L(x)=t

r(x)tfX(x|✓H) + p(✓K |�1) (68)

= t

Z

x:L(x)=t

r(x)fX(x|✓H) + p(✓K |�1) (69)

= t(↵d � ↵1) + p(✓K |�1) (70)

This means not only that �2(x) is better than �1(x), but that the ROC is
linear in (↵d � ↵1). A little thought leads us to see that

p(✓K |�2) = p(✓K |�1) +
↵d � ↵1

↵3 � ↵1
(p(✓K |�3)� p(✓K |�1)) (71)

which tells us that ROC becomes piece-wise linear, as illustrated in Figure
5. An implication is that an optimal ROC must always be concave: if it
were not, it could be made to be via randomization.

a

b

1

1

Figure 5: The ROC when there are point-masses. In this case there are five
of these. Note that it is possible to have some smooth sections and some
piecewise-linear.

4 Examples

4.1 Dice Problem Revisited

Here we reconsider the problem of the dice with too many 7s, caused (per-
haps?) by extra weighting for 3’s and 4’s. The data is the individual rolls
{xi}

2n
i=1 where xi 2 {1, 2, 3, 4, 5, 6} – it is important not to try to out-think

14



the mathematics by deciding too early what statistics of the data (like only
counting the 7’s) we should use. We define

zj(xi) ⌘

(
1 xi = j

0 else
(72)

which is isomorphic to xi. We thus have

f(x|✓) =
2nY

i=1

6Y

j=1

✓
zj(xi)
j

(73)

and

✓ ⌘

0

BBBBBBB@

✓1

✓2

✓3

✓4

✓5

✓6

1

CCCCCCCA

where ✓H =

0

BBBBBBB@

1/6
1/6
1/6
1/6
1/6
1/6

1

CCCCCCCA

✓K =

0

BBBBBBB@

1/8
1/8
1/4
1/4
1/8
1/8

1

CCCCCCCA

(74)

We write

L(x) =

Q2n
i=1

⇣
1
8

⌘
z1(xi)+z2(xi)+z5(xi)+z6(xi) ⇣1

4

⌘
z3(xi)+z4(xi)

Q2n
i=1

⇣
1
6

⌘
z1(xi)+z2(xi)+z3(xi)+z4(xi)+z5(xi)+z6(xi)

(75)

=
2nY

i=1

✓
3

2

◆
z3(xi)+z4(xi) ✓3

4

◆1�z3(xi)�z4(xi)

(76)

=
2nY

i=1

✓
3

4

◆
(2)z3(xi)+z4(xi)

�
(77)

From this we see that the proper test statistic, is

T (x) =
2nX

i=1

z3(xi) + z4(xi) (78)

meaning that the observed number of 3’s and 4’s is to be compared to a
threshold.

4.2 Gaussian / Gaussian Problem

H : xi = ⌫i

K : xi = si + ⌫i (79)
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where the ⌫i’s are iid Gaussian with mean zero and variance �2, and the
si’s are independent and Gaussian, the i

th with mean µi and variance �2
i
.

In our formalism,

f(x|✓) =
nY

i=1

1
q
2⇡✓22i

e
�(xi�✓1i)2/(2✓22i) (80)

and

✓ =

 
{µi}

{�
2
i
}

!

: ⇥H =

( 
{0}
{�

2
}

!)

⇥K =

( 
{µi}

{�
2 + �

2
i
}

!)

(81)

We form the LR and simplify to get

T (x) =
nX

i=1

x
2
i

 
�
2
i

�2(�2 + �
2
i
)

!

+ 2
nX

i=1

µixi

 
1

�2 + �
2
i

!

(82)

Let’s see what this means.

• In the case that �2
i
= 0 this means that the mean is actually a deter-

ministic “signal”. We get the classic matched filter

T (x) =
nX

o=1

µixi (83)

• If µi = 0 then we have a test that uses the empirical variance:

T (x) =
nX

i=1

x
2
i

 
�
2
i

�2 + �
2
i

!

(84)

Note that the x
2
i
’s are weighted by a function that increases with the

expected variance under K; but that the weighting is not linear in �2
i
.

• More generally the optimal test blends matched filter and observed-
energy contributions.

4.3 Cauchy Problem

Cauchy noise has a “heavy tail,” meaning that the probability of getting a
large deviation away from the central point is (much) larger than it would
be for Gaussian noise. We write

H : xi = ⌫i

K : xi = ✓ + ⌫i (85)
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Figure 6: The implied nonlinearity (g(x)) that arises when a known unity
shift is to be detected in Cauchy noise.

in which the iid noise has pdf

f(⌫) =
1

⇡(1 + ⌫2)
(86)

Formally we have

f(x|✓) =
nY

i=1

1

⇡(1 + (xi � ✓)2)
(87)

in which ⇥H = {0} and ⇥K = {1}. It is easy to show that the optimal test
uses statistic

T (x) =
nX

i=1

log

 
1 + x

2
i

1 + (xi � 1)2

!

=
nX

i=1

g(xi) (88)

This is sketched in Figure 6. Note the e↵ect of the heavy-tailed noise: as
opposed the Gaussian case, relatively large observations are not especially
indicative of the alternative hypothesis. In fact, an observed xi = 1 is far
more suggestive of a mean shift than xi = 10.

4.4 Correlated Gaussian Noise

Here we have a known signal {si} and

H : xi = ⌫i

K : xi = ✓si + ⌫i (89)

in which ⇥H = {0} and ⇥K = {1}. The noise is Gaussian, with mean zero
and E{⌫i⌫j} = r(i� j). It is convenient to write this in terms of vectors as

H : x = ⌫

K : x = ✓s + ⌫ (90)
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where E{⌫⌫
T
} ⌘ R. Note that R is Toeplitz. It is straightforward to write

the likelihood ratio

L(x) = exp
✓
1

2
xTR�1x�

1

2
(x� s)TR�1(x� s)

◆
(91)

from which we get the test statistic

T (x) = sTR�1x = hTx (92)

in which
Rh ⌘ s (93)

We can re-write (92) as

T (x) = (R�1/2s)T (R�1/2x) (94)

to interpret this matched filter as correlating the whitened signal with the
whitened observation.

Since T (x) is Gaussian, this is a situation in which we can calculate the
performance analytically . . . such cases are, unfortunately, rare. We have

EH{T (x)} = 0 (95)

VH{T (x)} = sTR�1s (96)

EK{T (x)} = sTR�1s (97)

VK{T (x)} = sTR�1s (98)

in which V denotes variance. With

Q(y) ⌘

Z 1

y

1
p
2⇡

e
�z

2
/2
dz (99)

denoting the unit-Gaussian tail probability, we have

↵ = Q

✓
⌧

p

sTR�1s

◆
(100)

� = Q

 
⌧ � sTR�1s
p

sTR�1s

!

(101)

or
� = Q

⇣
Q

�1(↵)�
p

sTR�1s
⌘

(102)

Note the appearance of the signal-to-noise ratio (SNR) sTR�1s, which we
want as large as possible.
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If (102) is used for signal design, it is interesting that, ideally, s turns
out to be the eigenvector of R that corresponds to minimum eigenvalue. If
R is singular the SNR can be infinite; this would imply “perfect detection,”
which actually makes sense here as signal is designed to lie in a completely
noise-free subspace.

It can also easily be shown that the simple white-noise assumption
matched filter

T (x) = sTx (103)

has performance

� = Q

 

Q
�1(↵)�

sT s
p

sTRs

!

(104)

It is interesting that (104) is the same as (102) when s is an eigenvector of
R. (Why is that?)

Also note that the Toeplitz Distribution Theorem has it that for Toeplitz
matrices of dimension n the eigenvectors converge to the “DFT” sinusoidal
vectors, and hence the eigenvalues to the discrete power spectrum samples.
That has a nice interpretation for us in signal design: put the signal at the
frequency where the noise isn’t.

4.5 Gaussian Signal in Gaussian Noise

Here we have

H : x = ⌫

K : x = ✓s + ⌫ (105)

in which we will take ✓ as to be determined. The noise ⌫ is Gaussian with
covariance Rn and the signal is likewise Gaussian with covariance Rs; both
have mean zero.

We take the likelihood ratio and strip it down to essentials, to get

T (x) = xTR�1
n x � xT (Rn + ✓Rs)

�1x (106)

where of course we could combine these to

T (x) = xT (R�1
n � (Rn + ✓Rs)

�1)x (107)

for easier computation.
This is interesting, but consider the extreme cases. First we let ✓ ! 1,

and find
T (x) = xTR�1

n x (108)
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Apparently, in the large-signal case the optimal scheme ignores the structure
of the signal entirely and focuses only on seeing whether the observation
resembles noise only.

Conversely, let us consider the small-signal case ✓ ! 0. Let us use the
strategy in Golub & Van Loan to help. We know for an invertible matrix
A(✓) we have

A(✓)A(✓)�1 = I (109)

We di↵erentiate to obtain

d

d✓

h
A(✓)A(✓)�1

i
= 0 (110)

hence
d

d✓
[A(✓)]A(✓)�1 + A(✓)

d

d✓

h
A(✓)�1

i
= 0 (111)

or
d

d✓

h
A(✓)�1

i
= �A(✓)�1 d

d✓
[A(✓)]A(✓)�1 (112)

This means that we can write for small ✓

d

d✓

h
((Rn + ✓Rs)

�1)
i
⇡ R�1

n � ✓R�1
s RsR

�1
s (113)

or
T (x) = xTR�1

n RsR
�1
n x (114)

As opposed to the large-signal case in which the optimal strategy is to look
for the noise, apparently in the vanishing-signal case the optimal detection
structure does pretty close to the opposite: it looks for the (whitened) signal
in the (whitened) data.

4.6 Constant Random Signal in White Gaussian Noise

Now we have

H : xi = ⌫i

K : xi = ✓s + ⌫i (115)

The noise ⌫i are iid Gaussian with mean zero and unity variance, and the
“signal” s is likewise Gaussian with mean zero and unity variance. Note
that the signal is unknown but constant.

We have

f(x|s, ✓) =
✓

1

2⇡

◆
n

e
�
P

n

i=1
(xi�✓s)2/2 (116)
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so

f(x|✓) =
Z 1

�1

✓
1

2⇡

◆
n+1

e
�
P

n

i=1
(xi�✓s)2/2�s

2
/2
ds (117)

We complete the square to find

f(x|✓) =
Z 1

�1

✓
1

p
2⇡

◆
n+1

e
� 1

2 [(1+n✓
2)s2�2(✓

P
n

i=1
xi)s+

P
n

i=1
x
2
i ]ds (118)

=
Z 1

�1

✓
1

p
2⇡

◆
n+1

e
� (1+n✓

2)
2

h
s
2� 2

(1+n✓2)
(✓
P

n

i=1
xi)s
i

⇥ e
� 1

2 (
P

n

i=1
x
2
i
)
ds (119)

=
Z 1

�1

✓
1

p
2⇡

◆
n+1

e
� (1+n✓

2)
2

h
s
2� 2

(1+n✓2)
(✓
P

n

i=1
xi)s+

1
(1+n✓2)2

(✓
P

n

i=1
xi)2
i

⇥ e
� 1

2

h
(
P

n

i=1
x
2
i
)� 1

(1+n✓2)
(✓
P

n

i=1
xi)2
i

ds (120)

=
✓

1
p
2⇡

◆
n 1
p
(1 + n✓2)

e
� 1

2

h
(
P

n

i=1
x
2
i
)� 1

(1+n✓2)
(✓
P

n

i=1
xi)2
i

(121)

We take the likelihood ratio and remove superfluous functions, and come up
with

T (x) =

�����

nX

i=1

xi

����� (122)

This, if you think about it, makes sense.

5 Bayes Detection

5.1 The Test

Neyman-Pearson detection can be appealing in that very little is needed to
specify it beyond the statistical description; in fact, all that is needed is the
desired false alarm rate. Bayes detection, on the other hand assumes that
much more is available in background. Specifically, assume that one has to
hand the prior probabilities of the hypotheses ⇡H and ⇡K = 1�⇡H . We next
assume that we have distributions on ⇡(✓) for all values, such that we could
write ⇡(✓|H) and ⇡(✓|K) to describe the conditional behavior of ✓ under the
two hypotheses. These could, of course, be point-masses if ✓ takes on only
one value under each hypothesis.

Further, assume that one has been given costs associated with the various
decisions: cHH , cKH , cHK & cKK . These should be read such that cAB is
the cost of deciding A when in fact B is true. For example, cKH would be
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the cost of deciding that K is true when in fact H is true, and might be read
as the cost of a false-alarm; this might be the cost of sending a fire-truck
when there is no fire. Similarly, cHK would be the cost of deciding that H
is true when in fact K is true, and might be read as the cost of a missed
detection; this might be the cost of the burnt building that might have been
saved by a fire-truck’s dispatch. It is di�cult to interpret cHH and cKK ,
but let us leave them for now.

We define the loss function

l(✓, d(x)) ⌘ cAB when ✓ 2 ⇥B and d(x) = A (123)

We note that all this development could happen nearly equivalently when
l(✓|d(x)) varied over ✓ – this could be reasonable when some values of ✓ 2 ⇥K

are more costly to miss than others. By extension of (123) we define the
Bayes risk

r(⇡, d) ⌘ Ex,✓{l(✓, d(x)} (124)

We expand this latter as

r(⇡, d) =
Z

⇥

Z

⌦
l(✓, d(x))f(x|✓)⇡(✓)dxd✓ (125)

=
Z

⇥H

Z

⌦H

cHHf(x|✓)dx+
Z

⌦K

cKHf(x|✓)dx
�
⇡(✓|H)⇡Hd✓

+
Z

⇥K

Z

⌦H

cHKf(x|✓)dx+
Z

⌦K

cKKf(x|✓)dx
�
⇡(✓|K)⇡Kd✓

= cHH⇡H +
Z

⇥H

Z

⌦K

(cKH � cHH)f(x|✓)dx
�
⇡(✓|H)⇡Hd✓

+cHK⇡K +
Z

⇥K

Z

⌦K

(cKK � cHK)f(x|✓)dx
�
⇡(✓|K)⇡Kd✓

= cHH⇡H +
Z

⌦K


(cKH � cHH)⇡H

Z

⇥H

f(x|✓)⇡(✓|H)d✓
�
dx

+cHK⇡K +
Z

⌦K


(cKK � cHK)⇡K

Z

⇥K

f(x|✓)⇡(✓|K)d✓
�
dx

= cHH⇡H +
Z

⌦K

[(cKH � cHH)⇡Hf(x|H)] dx

+cHK⇡K +
Z

⌦K

[(cKK � cHK)⇡Kf(x|K)] dx

= cHH⇡H + cHK⇡K (126)

+
Z

⌦K

[(cKH � cHH)⇡Hf(x|H)� (cHK � cKK)⇡Kf(x|K)] dx
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in which

f(x|H) ⌘

Z

⇥H

f(x|✓)⇡(✓|H)d✓ (127)

f(x|K) ⌘

Z

⇥K

f(x|✓)⇡(✓|K)d✓ (128)

From (126) the optimal strategy to minimize r(⇡, d) is clear. It is

d(x) =

8
<

:
K

f(x|K)
f(x|H) �

(cKH�cHH)⇡H

(cHK�cKK)⇡K

H
f(x|K)
f(x|H) <

(cKH�cHH)⇡H

(cHK�cKK)⇡K

(129)

where in fact the risk is not a↵ected the choice what to do at the threshold.
Note that this is a likelihood ratio test, but di↵ers from the Neyman-Pearson
case in that the threshold is fixed, specified and easy to calculate from the
problem parameters.

As regards this nice threshold

⌧ =
(cKH � cHH)⇡H
(cHK � cKK)⇡K

(130)

note that if you decide to modify the likelihood ratio L(x) by a monotone
increasing transformation to L(x) ! g(L(x)), the same transformation must
be applied to the threshold ⌧ ! g(⌧). Note also that these strange costs of
making the right decision (cHH & cKK) appear only in an additive way. For
example, if you decided that the cost of dispatching a fire-truck to a false
alarm was cKH = $800 and (for some unearthly reason) that the cost of not
dispatching the fire-truck was cHH = $100, this is operationally the same as
cKH = $700 and cHH = $0. As a final note, in the appealing case that the
error costs are equal we use

⌧ =
⇡H

⇡K
(131)

in which case the Bayes detector minimizes the probability of error.

5.2 An Example

Suppose we have

H : xi ⇠ e
�xiu(xi)

K : xi ⇠
1

2
e
�xi/2u(xi) (132)
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Figure 7: The Bayes risk plotted for the example of (132). The maximum
occurs at ⇡H = 1/

p
5.

with independent samples. The costs of errors are equal, here: cKH = cHK .
The test decides for K if and only if

L(x) =
✓
1

2

◆
n

e
1
2

P
n

i=1
xi �

⇡H

1� ⇡H
(133)

or equivalently
nX

i=1

xi � 2 log
✓
2n

⇡H

1� ⇡H

◆
(134)

Let us examine this for n = 1, in which case we have a threshold test on x:

x � 2 log
✓

2⇡H
1� ⇡H

◆
⌘ ⌧ (135)

We first note that if ⇡H < 1/3 the RHS is negative: this means that in
for such ⇡H the optimal decision is always for K! The corresponding Bayes
risk is hence the probability that the hypothesis is H (since our decision is
always for K), meaning r(⇡, d) = ⇡H .

When ⇡H � 1/3 things are more interesting. We have

r(⇡, d) = Pr(d(x) = K|H)⇡H + Pr(d(x) = H|K)(1� ⇡H) (136)

=
Z 1

⌧

e
�x

dx⇡H +
Z

⌧

0

1

2
e
�x/2

dx(1� ⇡H) (137)

= e
�2 log(⇡H/(1�⇡H))

⇡H

+
⇣
1� e

�2 log(⇡H/(1�⇡H))/2
⌘
(1� ⇡H) (138)
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=
✓
1� ⇡H

2⇡H

◆2

⇡H +
✓
3⇡H � 1

2⇡H

◆
(1� ⇡H) (139)

=
(1� ⇡H)(5⇡K � 1)

4⇡H
(140)

This is plotted in figure 7.

6 Composite Tests

6.1 The Problem

Composite tests are those in which either or both of ⌦H or ⌦K is not a
singleton. A benign example is

H : xi = ⌫i

K : xi = ✓ + ⌫i (141)

The noises ⌫i are iid Laplace, such that

f(x|✓) =
nY

i=1

1

2
e
�|x�✓| (142)

for which the optimal test uses the nonlinearity plotted in figure 8. Ignore
the vertical extent, since this can be scaled; the important issue is the break-
point. One might reasonably expect that the test that uses ✓ = 1.7 when
in fact ✓ = 0.9 would perform suboptimally but not especially poorly. The
composite test here to consider might be ⇥H = {0} versus ⇥K = {✓ : ✓ > 0}.

Conversely, consider the test

H : x = ⌫

K : x = e✓ + ⌫ (143)

in which ej is the j
th Cartesian basis vector6 and ⇥K = {1, 2, . . . , n} – we

can assume that the noise ⌫ is white and unit Gaussian. It’s fairly clear that
the test that assumes ✓ = 1 when in fact ✓ = 2 would be completely useless.

So, composite tests can either present small issues or be highly perni-
cious. In the following we shall suggest means to deal with them. Before we
do so, please note that both simple and composite tests can be exacerbated
by the problem of nuisance parameters, these being unknown parameters
in the statistical model that do not relate to testing. Consider (143) with

6
For parallelism, one can take ⇥H = {0} and assign e0 to be all 0’s.
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Figure 8: The nonlinearity used for (142). Rather arbitrarily, the value
✓ = 1.7 has been used here.

⇥K = {1} (i.e., simple) but with ⌫ of unknown variance �2. Unknown pa-
rameters cannot be treated using composite hypothesis testing techniques,
and we will discuss the matter later in the important case that it relates to
the need for testing to be “CFAR” (of constant false-alarm rate).

6.2 Case 1: There is a Prior on ✓

To some extent this is tautological, since it is clear that if there is a prior
on ✓ then we can write

f(x|H) =
Z

⇥H

f(x|✓)f(✓|✓ 2 ⇥H)d✓ (144)

f(x|K) =
Z

⇥K

f(x|✓)f(✓|✓ 2 ⇥K)d✓ (145)

and the hypothesis-testing problem that one might have thought composite
reveals itself as simple. An example is suggested by (115), for us here put
concretely as

H : xi = ⌫i

K : xi = ✓ + ⌫i (146)

where ✓ is Gaussian. The solution is that the test should use the statistic

T (x) =

�����

nX

i=1

xi

����� (147)

as in (122).
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6.3 Case 2: A UMP Test Exists

Consider the hypothesis test

f(x|✓) =
nY

i=1

1
p
2⇡

e
� (xi�✓si)

2

2 (148)

in which {si} is a known signal, ⇥H = {0} and ⇥K = {✓ > 0}. We select one
value of ✓, and discover that the optimal LRT can be reduced to comparison
of the matched filter

T (x) =
nX

i=1

sixi (149)

to a threshold. But we also note that if we had chosen some other ✓ 2 ⇥K the
form of the test (and the decision) would remain the same. This identifies
(148) as being the most powerful (optimal) test for all ✓ 2 ⇥K : it is uniformly
most powerful, or UMP. Remember that the likelihood ratio does not define
the test; rather �(x) – or, if you prefer, ⌦H & ⌦K – defines the test.

UMP tests are wonderful. But they are also, unfortunately, rather rare.

6.4 Case 3: Use a Uniform Prior

If one knows nothing about the relative likelihood of values of ✓ 2 ⇥K

(or ✓ 2 ⇥H for that matter) – meaning one has no reason to expect that
any value is more likely than any other value – then it is not illogical to
assume that ✓ has a uniform distribution over the set. With this assumed,
the hypothesis testing problem reduces precisely to Case 1: this is a simple
hypothesis test masquerading as composite.

A nice example of this is the test (143). It is fairly simple to show that
the optimal test statistic is

T (x) =
nX

i=1

e
xi (150)

which is actually appealing (see later discussion of the GLRT). A problem
arises7 when the set is unbounded, such as in (142) with ⇥K = {✓ > 0}. We

7
Another problem is that there is no universal agreement on what is meant by uniform.

For example, some believe that a proper “uniformity” on the variance for a Gaussian

random variable ought to imply that the prior distribution of the variance scale as 1/�2
.

Further, mathematically-inclined people become rather tedious about the naturalness of a

conjugate prior. A conjugate prior remains in the same family when it becomes a posterior.

For example, a Gaussian prior with a Gaussian likelihood begets a Gaussian posterior;

and a � prior with a Bernoulli likelihood yields a � posterior. Very, very nice and cute

and berries & cream to the mathematicians; but why should nature provide these?
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would have

f(x|K) = lim
A!1

1

A

Z
A

0

nY

i=1

1

2
e
�|xi�✓|

d✓ (151)

which converges to zero and has no special useful shape while it does so.

6.5 Case 4: Maximum Likelihood Methods

6.5.1 The GLRT

Here we have, in general, a situation in which neither ⇥H nor ⇥K is a
singleton; or at least one of the two is not. Maximum likelihood methods
resolve this to simple hypothesis testing by extracting the MLE of ✓ – sep-
arately where appropriate under the two hypotheses – and testing as if the
sets were the derived singletons. Mathematically, the generalized likelihood
ratio (GLR) is

T (x) ⌘
max✓2⇥K

{f(x|✓)}

max✓2⇥H
{f(x|✓)}

(152)

to be compared to a threshold in the usual way. An easy example of the
GLR is (143), in which case

T (x) = max
i

{xi} (153)

is the GLR. It is interesting to compare (153) to (150); clearly they are
di↵erent8 but also just as clearly they focus on the large-value observation.
They are especially di↵erent in the small signal regime in which (150) is
more forgiving.

Another and rather canonical example of the GLR is the linear model

x = A✓ + ⌫ (154)

in which ⌫ is white and Gaussian and A is a known matrix. This can be
formalized as

f(x|✓) =
✓

1
p

2⇡�2

◆
n

e
� 1

2�2 (x�A✓)T (x�A✓) (155)

with ✓ an m-vector and where ⇥H = {0} and ⇥K = {✓ : ✓ 6= 0}. Provided
m < n (n is the length of x) we have the MLE

✓̂ = (ATA)�1ATx (156)

8
Do not be fooled by the value itself: either exponentiate (153) or take the logarithm

of (150) to get them on the same scale, and note that as usual monotone-increasing

nonlinearities have no e↵ect on the test.

28



which means that the “signal” in the derived simple hypothesis test is

ŝ = A(ATA)�1ATx (157)

and hence the GLR (the derived matched filter) is

T (x) = xTA(ATA)�1ATx (158)

which is attractive. We will in a later chapter spend more time with various
GLRTs.

The GLR possesses some optimality properties when the situation is
asymptotic. But from experience, the GLRT is seldom beaten by other
tests in a composite testing situations. Many great statisticians (such as
Lehmann) do not even bother with the monicker “generalized” . . . they sim-
ply call it the likelihood ratio test. So the (rather uninteresting) advice that
must be given is that if one can easily derive the GLR for one’s problem
– this means either that the MLE is explicit or its numerical invocation is
well-behaved enough that it is satisfactory to say that ✓̂ is in the neighbor-
hood of the true ✓ – then one probably ought to use the GLRT. It is the
other situations, usually small-signal ones where the MLE performance is
not so good, that are perhaps more interesting.

As a final note, the situation of testing with nuisance parameters (like
the variance) can be posed as a GLR. It does not always work, but can in
some cases o↵er satisfying performance.

6.5.2 Asymptotic GLRs

There are two forms of GLR that are worth mentioning, since they can be
simpler to implement than the raw GLR and since they o↵er some perfor-
mance expressions. These are both based on the asymptotic properties of
the MLE. These are the Wald and Rao tests, and we will discuss them later.

6.6 Case 5: The Small-Signal Approximation

Let us assume that ⇥H = {0} and ⇥K = {✓ : ✓ > 0}. The GLR approach
would estimate ✓ via maximum likelihood, but if ✓ is very small such estima-
tion may not work e↵ectively . . . or at least it may result in a complicated
test.

The locally-optimal (LO) approach is to assume that ✓ is very small,
although not 0, under K. The reason is two-fold. First, the test statistic
so formed is often very simple and in many cases has good performance
predictability. The second reason is more intuitive than provable: a test
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that works as well as it can in the most di�cult situation (of vanishing
signal) probably works well (admittedly no longer optimally) when the signal
is larger. We will spend a great deal of the course with LO detection.

The key property that informs LO detection is the Taylor series:

f(x|✓) ⇡ f(x|✓)|
✓=0 + ✓

d

d✓
f(x|✓)

����
✓=0

(159)

meaning that we can use

T (x) =
ḟ(x|✓)

f(x|✓)

�����
✓=0

(160)

as our LO test statistic. More on this next chapter.
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1 Generalized Neyman-Pearson Lemma

Suppose we want to design a test to maximize
Z

g(x)�(x) (1)

such that
Z

h1(x)�(x)  ↵1 (2)
Z

h2(x)�(x)  ↵2 (3)

...
...

... (4)

Then that test uses

�(x) =

8
><

>:

1 g(x) >
P

i
tihi(x)

r(x) g(x) =
P

i
tihi(x)

0 g(x) <
P

i
tihi(x)

(5)

for some {ti}. The proof is so similar to that of the Neyman-Pearson Lemma
that it is not given.

2 Small Signals

2.1 Asymptotic Power Function

Suppose we have the usual hypothesis test

x ⇠ f(x|✓) (6)
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where
⇥H = {✓ = 0} ⇥K = {✓ : ✓ > 0} (7)

Consider the situation of figure 2. This shows the power functions

p(✓|�) ⌘

Z
�(x)f(x|✓) (8)

of three tests. Our claim in this section is that all tests are good when ✓ is
large under K; hence we should concentrate on the situation that ✓ is small.
In that regime it appears that �1 is best. If indeed it is the best possible test
over some (open) interval 0 < ✓ < ✏ then we call it locally-optimal. That we
be able to write

p(✓|�) ⇡ p(0|�) + ✓ṗ(0|�) (9)

for small ✓, in which

ṗ(0|�) =
d

d✓
p(✓|�)

����
✓=0

(10)

is key to our analysis. Clearly our goal is to maximize ṗ(0|�).

p(q|d)
1

q

d1
d2

d3

a

Figure 1: Power functions of three tests.
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2.2 One-Sided Alternative: Locally-Optimal Detection

Testing ⇥H = {0} versus ⇥K = {✓ > 0}, we desire to maximize

ṗ(0|�) =
d

d✓

Z
�(x)f(x|✓)

����
✓=0

(11)

=
Z

�(x)
d

d✓
f(x|✓)

����
✓=0

(12)

⌘

Z
�(x)ḟ(x|0) (13)

⌘

Z
�(x)g(x) (14)

and
h(x) = f(x|0) (15)

so the locally-optimal test uses the thresholded statistic

Tlo(x) ⌘
ḟ(x|0)

f(x|0)
(16)

We have seen this form of tests statistic before, developed as linear terms in
the Taylor expansion of the likelihood ratio.

2.3 Two-Sided Alternative: Unbiased Testing

Suppose have ⇥H = {0} and ⇥K = {✓ 6= 0}. If we use the LOD formulation
to maximize ṗ(✓|�) it is mathematically obvious that while this is very good
for ✓ > 0 it is not at all good for ✓ < 0: when ✓ < 0

p(✓|�) = p(0|�) � |✓|ṗ(0|�) (17)

< ṗ(0|�) (18)

The condition of unbiasedness1 insists that, at least in the small-signal
regime, � is never less than ↵. Assuming continuity and di↵erentiability,
this implies that we must insist that ṗ(0|delta) = 0. Since for small signals
we can write

p(✓|�) ⇡ p(0|�) + ✓ṗ(0|�) +
1

2
✓2p̈(0|�) (19)

this means our goal is

maximize p̈(0|�) (20)

subject to ṗ(0|�) = 0 (21)

and p(0|�) = ↵ (22)

1The “bias” term is so over-used that I think its reappearance here is a real shame.
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The generalized Neyman Pearson Lemma delivers the result: compare

T (x) =
f̈(x)

f(x)
+ �

ḟ(x)

f(x)
(23)

to a threshold.

2.4 Example of Unbiassed Testing

Suppose we have (the usual, for now) situation that

H : xi = ⌫i

K : xi = ✓si + ⌫i (24)

where the noise {⌫i} are iid Gaussian and the signal {si} is known. The
sets are ⇥H = {0} and ⇥K = {✓ 6= 0}. We have

f(x|✓) =
✓

1
p
2⇡�

◆
n

exp

 

�
1

2�2

nX

i=1

(xi � ✓si)
2

!

(25)

from which

ḟ(x|✓) =

 
1

�2

nX

i=1

si(xi � ✓si)

!

f(x|✓) (26)

and hence

f̈(x|✓) =

 
1

�2

nX

i=1

si(xi � ✓si)

!2

f(x|✓) �

 
1

�2

nX

i=1

s2i

!

f(x|✓) (27)

Setting ✓ to zero and discarding irrelevant terms, we have

Tunb(x) =

 
nX

i=1

sixi

!2

+ �

 
nX

i=1

sixi

!

(28)

Some easy analysis would show that to preserve unbiasedness we must have
� = 0. We are left with

Tunb(x) =

�����

nX

i=1

sixi

����� (29)

Interestingly, this is the same form that we derived last section for the case
that ✓ was Gaussian.
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3 Locally Optimal Detection of Known Signals

3.1 The Nonlinear Correlator

With {⌫i} independent having densities fi and {si} known, consider

H : xi = ⌫i

K : xi = ✓si + ⌫i (30)

and ⇥H = {0} versus ⇥K = {✓ > 0} we have

f(x|✓) =
nY

i=1

fi(xi � ✓si) (31)

We take the derivative (product rule) and get

ḟ(x|✓) =
nX

i=1

�siḟi(xi � ✓si)
Y

j 6=i

fj(xj � ✓sj) (32)

which means we use

Tlo(x) =
nX

i=1

si
�ḟi(xi)

fi(xi)
(33)

In the iid case we simply2 use f and write

Tlo(x) =
nX

i=1

siglo(xi) (34)

with

glo(x) ⌘ �
ḟ(x)

f(x)
(35)

as our test statistic. That is, we “correlate” (i.e., the dot-product) the known
signal with a version of the observations that may have been nonlinearly
distorted by this function glo.

3.2 The Gaussian Case

Not surprisingly, with

f(xi) =
1

p
2⇡�i

e
� 1

2�2
i

x
2
i

(36)

2It is admitted that we use f to represent the full pdf of the entire observation stream
and the marginal. This is hereby apologized for but not avoided.
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we have
ḟ(xi) = �

xi
�2
i

f(xi) (37)

and

Tlo(x) =
nX

i=1

sixi
�2
i

(38)

We have

Tlo(x) =
nX

i=1

sixi (39)

if �i = � – the iid case.

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

-3

-2

-1

0

1

2

3

g
(x

)

=2

=1

=0.5

Figure 2: The Laplace nonlinearity for decreasing values of ✓ and corre-
sponding to s = 1, Note the convergence to a signum function. Ignore the
vertical scaling: this would be absorbed into the threshold.

3.3 The Laplace Case

Here we have

f(xi) =
1

2a
e�a|xi| (40)

from which
glo(x) = sgn(x) (41)

is easily calculated. See figure 2.
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-5 -4 -3 -2 -1 0 1 2 3 4 5

x

-1.5

-1

-0.5

0

0.5

1

1.5

g
(x

)

Cauchy
Gaussian mixture
Logistic

Figure 3: Nonlinearities for Cauchy, Gaussian mixture and Logistic cases.
The GM case uses " = 0.1, �1 = 1 and �2 = 2 – in cases of interest one
would be far more likely to find a large ratio �2/�1, but these are chosen
for plotting purposes. Note that the Cauchy glo is strict about “blanking”
large-amplitude observations. The Gaussian mixture glo begins to rise again
and eventually becomes infinite. The logistic can be seen to be a softer
version of the Laplace (sign) case.

3.4 The Cauchy Case

Here we have

f(xi) =
1

⇡(1 + x2
i
)

(42)

from which
glo(x) =

xi
(1 + x2

i
)

(43)

is easily calculated. See figure 3, which compares this to Gaussian mixture
and logistic.

3.5 The Gaussian Mixture Case

Here we have

f(xi) = (1� ")
1

p
2⇡�1

e
� 1

2�2
1
x
2
i
+ "

1
p
2⇡�2

e
� 1

2�2
2
x
2
i

(44)

where typically �1 refers to ambient (“well-behaved”) noise samples and
�2 � �1 refers to outliers – impulsive interference events – that happen
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only rarely (a fraction " of the time). We have

glo(x) =
(1� ") x

�
3
1
e
� 1

2�2
1
x
2

+ " x

�
3
2
e
� 1

2�2
2
x
2

(1� ") 1p
2⇡�1

e
� 1

2�2
1
x2

+ " 1p
2⇡�2

e
� 1

2�2
2
x2

(45)

which is probably more complicated than we hoped. See figure 3.

3.6 Logistic Case

Here we have the (familiar) cumulative distribution function

F (x) =
1

1 + e�x
(46)

and the probably-less familiar pdf

f(x) =
e�x

(1 + e�x)2
(47)

We write

f(x) =
1

1 + e�x
�

1

(1 + e�x)2
(48)

and hence

ḟ(x) =
e�xi

(1 + e�x)2
�

2e�x

(1 + e�x)3
(49)

From this we get

glo(x) =
2

1 + e�x
� 1 (50)

or

glo(x) =
1� e�x

1 + e�x
= tanh(x/2) (51)

See figure 3.

4 Comparison of Detectors

4.1 Relative E�ciency anf Asymptotic Relative E�ciency

Suppose we have a hypothesis test, and two di↵erent detection schemes, �a &
�b. Both operate at ROC point (↵,�), and to do so they require respectively
na & nb samples. The the relative e�ciency of scheme �a to �b is

REa,b(↵,�) ⌘
nb

na

(52)
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Clearly, then, if �a requires fewer samples than �b, then the relative e�ciency
is greater than unity, which makes sense. This is fine to write, but RE’s
utility is hampered by its parametrization in terms of (↵,�). The more
useful concept follows, and it assumes that there is no such dependence.

To define the asymptotic relative e�ciency (ARE) we need first to require
that ⇥H = {✓0} and ⇥K = {✓l} where

lim
l!1

✓l = ✓0 (53)

Unless the situation is trivial, na & nb both diverge as the hypotheses ap-
proach one another. Then we have

AREa,b ⌘ lim
l!1

⇢
nb

na

�
(54)

provided that limit is independent of ↵ & �. It will be seen that some
care must be taken with the sequence {✓l} since if if converges too quickly
the only possible value of (↵,�) is ↵ = � (detection is impossible); and if
too slowly, then (almost) any detector can achieve (↵,�) = (0, 1). That is,
care must be taken to avoid triviality; for now (and this will change, later)
picture that ✓l = ✓0 + �/

p
l, for some � that does not matter.

For example, let us examine

H : xi = ⌫i

K : xi = ✓ + ⌫i (55)

where the noise {nui} are iidGaussianN (0,�2) and the signal {si} is known.
The sets are ⇥H = {0} and ⇥K = {✓ 6= 0}. Detector �a is the linear detector,
using

Ta(x) =
naX

i=1

xi (56)

and detector �b is the sign detector, with

Tb(x) =
nbX

i=1

sgn(xi) (57)

Clearly Ta(x) is exactly Gaussian, with

E{Ta|H} = 0 (58)

E{Ta|K} = na✓ (59)

V{Ta|H} = na�
2 (60)

V{Ta|K} = na�
2 (61)
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so

� = Q
✓
Q�1(↵)�

n✓
p

n�2

◆
= Q

✓
Q�1(↵)�

p
na✓

�

◆
(62)

as we’ve seen previously, and Q is, as before, the unit-Gaussian tail proba-
bility. As for �b, we appeal to the central limit theorem (CLT) and assume
Tb(x) is also Gaussian, with

E{Tb|H} = 0 (63)

E{Tb|K} = nb(2q � 1) (64)

V{Tb|H} = nb (65)

V{Tb|K} = nb4q(1� q) (66)

in which

q ⌘ Pr(xi > 0|K) (67)

=
Z 1

0

1
p
2⇡�

e�(y�✓)2/2�2
dy (68)

=
1

2
+
Z 0

�✓

1
p
2⇡�

e�y
2
/2�2

dy (69)

⇡
1

2
+ ✓

1
p
2⇡�

(70)

where the approximation assumes that ✓ is small. Now assuming the CLT
we write

↵ = Q
✓

⌧
p
n
)
◆

(71)

in terms of the necessary threshold ⌧ , so

⌧ =
p
nQ�1(↵) (72)

hence

� ⇡ Q

 p
nbQ�1(↵)� nb(2q � 1)

p
n4q(1� q)

!

(73)

Now since from (70) we have

lim
✓!0

{4q(1� q)} = 1 (74)

we can write

� ⇡ Q

 

Q�1(↵)�
nb(2q � 1)

p
nb

!

⇡ Q
✓
Q�1(↵)�

p
nb✓

2
p
2⇡�

◆
(75)
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We equate (62) and (75) and find

p
na✓

�
=

p
nb✓

2
p
2⇡�

(76)

or

AREa,b = lim
l!1

⇢
nb

na

�
(77)

= ⇡/2 (78)

This relatively-small loss for the sign detector in Gaussian noise is perhaps
surprising. The factor ⇡/2 = 1.57 ⇡ 2dB is rather famous.

4.2 E�cacy

The work done in the last subsection to calculate the ARE of the linear
(optimal) detector to the sign-detector in Gaussian noise was, while not
complicated, rather lengthy. Fortunately there is another way to find the
ARE. Suppose we define

µn(✓) = E{Tn(x)|✓} (79)

�2
n(✓) = V{Tn(x)|✓} (80)

in which we consider the detector using test statistic Tn, with n samples on
which to operate. We specify the regularity conditions

d

d✓
µn|✓=0 ⌘ µ̇n(0) > 0 (81)

lim
n!1

⇢
µ̇n(0)

p
n�n(0)

�
⌘

p
⇠ > 0 (82)

lim
n!1

⇢
µn(✓)

µn(0)

�
= 1 (83)

lim
n!1

⇢
�n(✓)

�n(0)

�
= 1 (84)

Tn(x) obeys the CLT (85)

where
✓ = �/

p
n (86)

The quantity ⇠ is the e�cacy of the detector.
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4.3 The Pitman-Noether Theorem

Suppose in our hypothesis ✓l = �/
p
l, and that our test �(x) uses n samples.

We will relate
n = (l)2l (87)

which is general.
Let us examine what happens as l, n ! 1. Under the fifth assumptions

of e�cacy, we have

↵ = Q
✓
⌧ � µn(0)

�n(0)

◆
(88)

� = Q
✓
⌧ � µn(✓l)

�n(✓l)

◆
(89)

We solve (88) for the decision threshold ⌧ and insert that to (89) to get

� = Q

 
�n(✓)Q�1(↵)� (µn(✓l)� µn(0))

�n(✓l)

!

(90)

From the fourth assumption we have

� = Q
✓
Q�1(↵)�

µn(✓l)� µn(0)

�n(✓l)

◆
(91)

From the first and third assumption we get

� = Q
✓
Q�1(↵)�

✓lµ̇n(0)

�n(✓l)

◆
(92)

= Q

 

Q�1(↵)�
✓l
p
nµ̇n(0)

p
n�n(✓l)

!

(93)

= Q

 

Q�1(↵)�
�
p
n

p
l

µ̇n(0)
p
n�n(✓l)

!

(94)

= Q

 

Q�1(↵)�
�
p
n

p
l

µ̇n(0)
p
n�n(0)

!

(95)

= Q

 

Q�1(↵)�
�
p
n

p
l

p
⇠

!

(96)

= Q
⇣
Q�1(↵)� �

p
⇠
⌘

(97)

where in the fourth line we have used the fourth e�cacy assumption (again),
in the penultimate line we have used the second e�cacy assumption – its
definition – and in the last we have used (87).
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To compare two detectors (�a & �b) that have the same ROC operating
point we must therefore have

a
p
⇠
a

= b
p
⇠
b

(98)

Consequently

AREa,b = lim
l!1

⇢
nb

na

�
(99)

= lim
l!1

(
2
b

2a

)

(100)

=
⇠a
⇠b

(101)

This is the Pitman-Noether Theorem: the ARE is the ratio of e�cacies.

5 More about E�cacy

5.1 Performance Prediction

The e�cacy is a form of asymptotic signal to noise ratio. To see this, examine
(96) and write it as

� = Q

 

Q�1(↵)�
�
p
n

p
l

p
⇠

!

(102)

= Q
⇣
Q�1(↵)� ✓

p
n
p
⇠
⌘

(103)

That is, if the signal (✓) is su�ciently small and the detection record n is
su�ciently long, then (103) can plot the approximate ROC.

5.2 Nonlinear Correlator E�cacy

As we have seen before, the use of

T (x) =
nX

i=1

aig(xi) (104)

makes sense in testing situations like

H : xi = ⌫i

K : xi = ✓si + ⌫i (105)
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when ✓ is small and the noise {⌫i} is iid with pdf f(x). We will assume that
Z

g(x)f(x)dx = 0 (106)

Optimally we should have ai = si and g(x) = glo(x), but let us remain
general. Define

P 2
s ⌘ lim

n!1
1

n

nX

i=1

s2i (107)

P 2
a ⌘ lim

n!1
1

n

nX

i=1

a2i (108)

Pas ⌘ lim
n!1

1

n

nX

i=1

aisi (109)

We have

E{T |✓} =
Z  nX

i=1

aig(xi)
nY

i=1

f(x� ✓si)dx

!

(110)

=
nX

i=1

ai

Z
g(x)f(x� ✓si)dx (111)

and hence

d

d✓
E{T |✓} =

nX

i=1

ai

Z
g(x)

⇣
�siḟ(x� ✓si)

⌘
dx (112)

d

d✓
E{T |✓}

����
✓=0

=
nX

i=1

(�siai)
Z

g(x)ḟ(x)dx (113)

Since we trivially have

V{T |✓}|
✓=0 =

nX

i=1

s2i

Z
g(x)2f(x)dx (114)

we can calculate the e�cacy as

⇠ =
Pas

P 2
s

E(g, f)2 (115)

where3

E(g, f) ⌘

R
g(x)ḟ(x)dx

qR
g(x)2f(x)dx

(116)

3I apologize for the notation, this is to be in common with Kassam’s text
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5.3 Optimal E�cacy

From (115) we see from the Schwarz Inequality that

P 2
as =

 
1

n

nX

i=1

aisi

!2

(117)



 
1

n

nX

i=1

a2i

! 
1

n

nX

i=1

s2i

!

(118)

= P 2
aP

2
s (119)

with equality i↵ ai = si. This is perhaps not surprising: you should correlate
against the true signal if you have it.

But the Schwarz Inequality also gives us

✓Z
g(x)ḟ(x)dx

◆2

=

 Z
g(x)

q
f(x)

ḟ(x)
p
f(x)

dx

!2

(120)



✓Z
g(x)2f(x)dx

◆ Z
ḟ(x)2

f(x)
dx

!

(121)

or

E(g, f)2 

 Z
ḟ(x)2

f(x)
dx

!

= I(f) (122)

with equality i↵

g(x) =
ḟ(x)2

f(x)
= glo(x) (123)

Again that the locally-optimal nonlinearity maximizes e�cacy is not so sur-
prising. But perhaps the appearance of Fisher’s Information in (122) is at
least interesting.

5.4 Special Cases

In the linear correlator case that g(x) = x, we have

Z
g(x)ḟ(x)dx = �

Z
ġ(x)f(x)dx (124)

= �

Z
f(x)dx (125)

= �1 (126)
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and
Z

g(x)2f(x)dx =
Z

x2f(x)dx (127)

= �2 (128)

This means that for the linear-correlator

⇠ = Pas/�
2 (129)

regardless of the noise density.
In the sign correlator case that g(x) = sgn(x), we have

Z
g(x)ḟ(x)dx = �

Z
ġ(x)f(x)dx (130)

= �

Z
2�(x)f(x)dx (131)

= 2f(0) (132)

and
Z

g(x)2f(x)dx =
Z

sgn(x)2f(x)dx (133)

= 1 (134)

This means that for the sign-correlator

⇠ = Pas4f(0)
2 (135)

regardless of the noise density. In the case that the noise is Gaussian

f(x) =
1

p
2⇡�

e�x
2
/2�2

(136)

we get

⇠ = Pas

2

⇡�2
(137)

by evaluating at zero. Taking the ratio of the e�cacy of the sign-correlator
to that of the linear correlator, we easily get 2⇡ – as we found before with
much greater di�culty.
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1 Parametric Models

1.1 Heavy-Tailed Noise

It would be unusual to find a Gaussian random variable more than three
standard deviations away from its mean. This benign behavior is why the
linear correlator is such a favorable structure: a deviation from mean is
meaningful and should add its weight to the decision. Some noise processes,
on the other hand, contain outlying samples, these generally from rare impul-
sive events (lightning, ice-cracks, shrimp-claw snaps) that can easily cause
excursions from mean value of ten or more standard deviations. A linear
correlator – or any linear processing – of such noise can be catastrophic. In
fact, in the case of one of the heaviest-tailed noise distributions that we have
considered – Cauchy noise, that does not even have a standard deviation1 –
large observations are suppressed from influence on the decision.

At this point it is worthwhile to mention a statistic that at least to
some extent measures heavy-tailedness2 Such statistics can be useful, since a
distributional plot (a histogram, if empirical) often appears as bell-shaped,
and even a Cauchy distribution can appear little di↵erent from Gaussian
unless plotted logarithmically. At any rate, the statistic of which we speak
is the kurtosis, defined for a zero-mean random-variable as

 ⌘
E{x4}

E{x2}2
(1)

Since for any combination of jointly-Gaussian random variables {xi}4i=1 we

1The Cauchy pdf does not even have a mean: the integral does not converge.
2The “tail” of the distribution is the amount of probability that is many standard

deviations away from the mean. A distribution is referred to as heavy-tailed when that
weight is significantly larger than Gaussian.

1



can write

E{x1x2x3x4} = E{x1x2}E{x3x4} + E{x1x3}E{x2x4} + E{x1x4}E{x2x3}
(2)

we can take all of them to be x and see that for a Gaussian random variable
 = 3. (Some authors normalize the kurtosis by dividing it by 3.)

Now we can use the generalize Markov inequality to write for any random
variable x

Pr(|x� µ| > "�) = E{I(|x� µ| > "�)} (3)

 E

(✓
x

"�

◆4
)

(4)

= /"4 (5)

This development is perhaps familiar to some as identical to the way the
Chebychev inequality is justified; and indeed it can be applied to any abso-
lute moment, and in fact we shall see it again in the context of the Cherno↵
bound. The implication here is that the kurtosis does have some relevance
to measurement of tail weight.

1.2 Gaussian Mixture Noise

Since heavy-tailedness can be caused by rare outlying sample. As such, it is
reasonable to consider a two-element Gaussian mixture

f(x) = (1� ")
1

p
2⇡�1

e�x2/2�2
1 + "

1
p
2⇡�2

e�x2/2�2
2 (6)

with the idea that the former term is “ambient” well-behaved noise and the
latter the impulsive – " is typically very small. It is common practice to
use moment-matching to estimate the parameters, and since there are three
parameters three moments are needed:

E [{x2}] = (1� ")�21 + "�22 (7)

E [{x4}] = (1� ")3�41 + "3�42 (8)

E [{x6}] = (1� ")15�61 + "15�62 (9)

Please see figures 1 and 2 for a plot of the Gaussian-mixture pdf . The
locally-optimal nonlinearity for a Gaussian-mixture is

glo(x) =
(1� ") x

�3
1
e�x2/2�2

1 + " x
�3
2
e�x2/2�2

2

(1� ") 1
�1
e�x2/2�2

1 + " 1
�2
e�x2/2�2

2

(10)

and this is plotted in figure 3.
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Figure 1: Gaussian mixture with " = 0.1 (larger than it would normally
be), �1 = 1 and �2 = 4 (smaller than normal). The values chosen are for
graphical purposes, to emphasize the behavior. Note that the pdf does not,
by eye, seem to di↵er much from Gaussian.
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Figure 2: Log plot corresponding to figure 1. The non-Gaussian behavior is
obvious now, and takes the form of a “knee”.
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Figure 3: Locally-optimal nonlinearity corresponding to figure 1.
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1.3 Generalized Gaussian Noise

Generalized Gaussian noise has pdf

f(x) = ce�|x/a|k (11)

Given that k > 0 we can evaluate

1 =
Z 1

�1
f(x)dx (12)

= c
Z 1

�1
e�|x/a|kdx (13)

= 2c
Z 1

0
e�|x/a|kdx (14)

= 2ca/k
Z 1

0
t1/k�1e�tdt (15)

= (2ca/k)�(1/k) (16)

where the substitution t = (x/a)k is used; or

c =
k

2a�(1/k)
(17)

In a similar way3 we could find

�2 =
a2�(3/k)

�(1/k)
(18)

 =
�(5/k)�(1/k)

�(3/k)2
(19)

I(f) =
k2�(3/k)�(2� 1/k)

�2�(1/k)2
(20)

And since

glo(x) =
d

dx
(log(f(x)) (21)

we can write
glo(x) / sgn(x)|x|k�1 (22)

Note that the cases k = 1 and k = 2 correspond, respectively, to Laplace
and Gaussian noises – the sign-detector and linear correlator follow.

3For reference, for b even we have E{xb} = ab�
�
b+1
k

�
/
�
1
k

�
.
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Figure 4: Johnson noise with � = 0.75.

1.4 Johnson Noise

There is a broad class of transformation noise, for which

x = g�1(u) (23)

the underlying random variable u is unit-normal, and g(·) is an invertible
nonlinearity. It is straightforward to see

F (x) = Pr(g�1(u) < x) (24)

= Pr(u < g(x)) (25)

= 1�Q(g(x)) (26)

f(x) = ġ(x)
1

p
2⇡

e�g(x)2/2 (27)

For the particular transformation known as Johnson noise, we have

g�1(u) = �sinh(u/�) (28)

The parameters � and � can be inferred from moments4 as

� =

s
2�2

p
2� 2� 2

(29)

� =

s
2

log(
p
2� 2� 1)

(30)

4The method of moments is easy; however, maximum likelihood estimation of the
parameters may give a slightly better fit.
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Note that one can write

x =
�

2
(eu/� � e�u/�) (31)

so

e2u/� �
2

�
eu/� � 1 = 0 (32)

hence by the quadratic formula

g(x) = � log

0

@x

�
+

s✓
x

�

◆2

+ 1

1

A (33)

ġ(x) =
�

q
�
�x
�

�2 + 1
(34)

The formulas for f(x) and glo(x) follow but are tedious.
It turns out that Johnson noise has some characteristics of log-normality

(substitute (33) to the exponent of the Gaussian). What is perhaps appeal-
ing about Johnson noise is that it needs only two parameters to match a
heavy-tailed pdf . An example noise trace is in figure 4.

1.5 Alpha-Stable Noise

Consider that we are interested in a random variable with characteristic
function

�(!) = e�|�!|↵ (35)

This concept attracted some attention a few years ago, because in keeping
with the exponential nature of �(!) such random variables have the property
that when they are added together the sum remains in the same family
(only � will change). It is also nice in that ↵ = 2 and ↵ = 1 are respectively
Gaussian and Cauchy. However, since other choices for ↵ do not have explicit
pdf ’s (they are represented as infinite series), this nice fact loses some of its
attraction.

Additionally, considering that except for Gaussian random variables one
should avoid using linear operations, the ↵-stable family loses essentially all
other appeal. It would be interesting to find a non-Gaussian density f(x)
such that if glo(x) has pdf f̃(·), then sums of glo(xi)’s remained in the family
f̃(·). As far as I am aware no one has attacked this question, and there may
be no such f(·).
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1.6 Series Expansions

Modulo situations of pathology, any pdf can be represented via a series. An
especially favorable sort of series is

f(x) = f̂(x)
1X

i=1

ci i(x) (36)

in which Z
f̂(x) i(x) j(x)dx = �i=j (37)

and f̂ is some canonical pdf (like Gaussian). The choice of f̂ actually matters
little; but convergence is better if f and f̂ are “close”. It is easy to show
that

ci =
Z
 i(x)f(x)dx = E{ i(x)} (38)

to determine the coe�cients.
One example is f̂(x) = �(x) (the Gaussian pdf), for which

 i(x) =
1
p
i!

�(i)(x)

�(x)
(39)

and the superscript (i) denotes the ith derivative. If f̂ is exponential the
functions are Laguerre polynomials; if uniform they are Jacobi.

2 Bivariate Densities

2.1 Series Expansions

Again, modulo situations of pathology, any bivariate pdf can be represented
via a series

f(x, y) = f̂(x)f̂(y)
1X

i=1

1X

j=1

ci,j i(x) j(y) (40)

Special cases include the diagonal

f(x, y) = f̂(x)f̂(y)
1X

i=1

ci i(x) i(y) (41)

and the Frechet

f(x, y) = f̂(x)f̂(y)(1 + c (x) (y)) (42)

which can be shown only to be possible for (hidden-) Markov switched sys-
tem.
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2.2 Poor’s Locally-Optimal Memoryless Detector

Poor & Thomas asked what would happen in the standard detection situa-
tion that a known and vanishingly-small signal in noise

H : xi = ⌫i

K : xi = ✓ + ⌫i (43)

was to be detected via nonlinear correlator

T (x) =
nX

i=1

g(xi) (44)

The wrinkle is that the correlator is memoryless but the noise is not inde-
pendent5. One might at first glance expect the best g(x) to be glo(x), but
that turns out not to be the case. Assuming E{g(x)|H} = 0, we have

d

d✓
E{T (x)}|✓=0 = n

Z
ḟ(x)g(x)dx (45)

We also have

V{T (x)}|✓=0 =
nX

i=1

nX

j=1

Z
g(xi)g(xj)fi�j(xi, xj)dxidxj (46)

! n
Z

f(x)g(x)2dx + n
Z

g(x)g(y)K(x, y)dxdy (47)

where the ! indicates that this becomes equality as n diverges and

K(x, y) ⌘

nX

k=1

(fk(x, y) + f�k(x, y) (48)

Now we have

⇠ =
(n

R
ḟ(x)g(x)dx)2

n(n
R
f(x)g(x)2dx + n

R
g(x)g(y)K(x, y)dxdy)

(49)

as the e�cacy.
We want to maximize this, so we set up the proxy functional

J(g(x)) ⌘

Z
ḟ(x)g(x)dx+ �

✓Z
f(x)g(x)2dx +

Z
g(x)g(y)K(x, y)dxdy

◆

(50)

5We will assume wide-sense stationarity and a certain condition called “strong mixing”
that basically says that the central limit theorem will apply to T (x).
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We apply calculus of variations, and insist that at an optimum g(x) we must
have

d

d✏
J(g(x) + ✏�(x))|✏=0 = 0 (51)

irrespective of �(x). The argument is that if

d

d✏
J(g(x) + ✏�(x))|✏=0 > 0 (52)

then clearly g(x)+✏�(x) is better than g(x) for some small ✏. However, even
if we have

d

d✏
J(g(x) + ✏�(x))|✏=0 < 0 (53)

this implies that g(x)�✏�(x) is better than g(x) for some small ✏, and hence
even then g(x) could not be optimum.

Hence, we write

J(g(x)) =
Z

ḟ(x)[g(x) + ✏�(x)]dx + �
✓Z

f(x)[g(x) + ✏�(x)]2dx

+
Z
[g(x) + ✏�(x)][g(y) + ✏�(y)]K(x, y)dxdy

◆
(54)

so

d

d✏
J(g(x) + ✏�(x))|✏=0 =

Z
ḟ(x)�(x)dx + �

✓
2
Z

f(x)�(x)g(x)dx

+
Z
[�(x)g(x) + �(y)g(y)]K(x, y)dxdy

◆
(55)

To make this zero irrespective of �(x) we require

ḟ(x) + 2�g(x)f(x) + 2�
Z

K(x, y)g(y)dy = 0 (56)

or
ḟ(x)

f(x)
+ 2�g(x) + 2�

Z
K(x, y)

f(x)
g(y)dy = 0 (57)

Realizing that � is a constant to be determined, but that the constant con-
tributes only as a scalar multiplier on g(x), we write

glo(xi) = g(xi) � E {glo(xi)|{xj}i 6=j} (58)

which makes sense and is rather beautiful. It can easily be shown that the
expectation is zero if the noise is independent; and that it is linear (i.e., a
full matched filter) if the noise is Gaussian.
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1 Introduction

A quantized detection system maps each observation to one of L levels prior
to taking its place in a decision. Such a scheme may be representative
of decentralized detection, in which the quantization is performed to save
bandwidth before transmission from local sensor to data fusion center. For
example, if L = 8 only 3 bits are needed for each transmission; and we have
seen that even for a single bit (L = 2) only about 2dB is lost relative to
optimal in an additive Gaussian situation. Please also note that “3 bits” is
actually very conservative, since a data compression system could bring this
down to a very low level indeed. Another important note is that while in the
following we will be at pains to determine the optimal quantization scheme
– both thresholds {tk}Lk=0 and levels {lk}L�1

k=0 – we do not need to transmit
between local sensor and fusion center at this level, but instead simply need
to tell the fusion center that if it gets (decodes?) message k then it should
use level lk.

There are two schemes on how to perform such quantization. In the
first, we quantize the data xi directly. Some thought tells us that such
quantization amounts to use of a staircase-style nonlinearity g(x) in a nor-
mal correlator/detector structure. We will gain insight from this; but that
insight will suggest – and we shall show – that, in fact, it is better to use a
nonlinearity (actually glo(x)) first, and quantize later.

We shall perform our analysis in the small-signal regime: locally-optimal
quantization and performance measured by e�cacy, and an additive known
signal. In fact the results can be shown to extend much farther, to cases of
non-vanishing signals: it can be shown that a likelihood-ratio quantization
is optimal, given independence over i when conditioned on the hypothesis.
This also implies that data can be accumulated prior to quantization, mean-
ing that the likelihood ratio can formed of integrated data at each sensor.

1



2 Direct Data (Abscissa) Quantization

2.1 The Nonlinearity

Consider that we have thresholds �1 = t0 < t1 < . . . < tL�1 < tL = 1
and we define quantization regions

Ak = {x : tk  x < tk+1}, k = 0, 1, . . . (L� 1) (1)

which we will assume here are identical1 for each observation/sensor2.

pki(✓) ⌘ Pr(xi 2 Ak|✓) (2)

= Pr(tk  xi < tk+1|✓) (3)

= F (tk � ✓si) � F (tk+1 � ✓si) (4)

Let us also define

zik ⌘
(

1 xi 2 Ak

0 xi /2 Ak

)

(5)

If it clear that z = {zik} determines the quantized observations, albeit rather
profligately. But we can use z to write the likelihood of the observation after
quantization – the z is what the fusion center / decision-maker will use to
make its final decision. We have

f(z) =
nY

i=1

L�1Y

k=0

pki(✓)
zik (6)

Thence we write

log(f(z)) =
nX

i=1

L�1X

k=0

zik log(pki(✓)) (7)

d

d✓
log(f(z))|✓=0 =

nX

i=1

L�1X

k=0

zik
ṗki(0)

pki(0)
(8)

=
nX

i=1

L�1X

k=0

ziksi
f(tk+1)� f(tk)

F (tk+1)� F (tk)
(9)

1We shall see shortly that the quantizers ought to be identical if the noises at the
sensors are the same.

2We will use sensor and observation interchangeably. Most of our previous work has
assumed time-series detection, hence “observation” seems appropriate; but quantization
probably makes the most sense in the context of data fusion, where we should speak of
“sensors.” To keep commonality with previous work, we will probably have time series
detection as our mental model.
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=
nX

i=1

siq(xi) (10)

(11)

in which
q(x) ⌘ lk when tk  x < tk+1 (12)

and

lk =
f(tk+1)� f(tk)

F (tk+1)� F (tk)
(13)

An example is plotted in figure 1, and the message is that this “quantizer”
is really just a nonlinearity, similar to what we always have with nonlinear
correlators.

It is interesting to evaluate

E{glo(x)|tk  x < tk+1) =

R tk+1
tk

�ḟ(x)
f xf(x)dx

R tk+1

k f(x)dx
(14)

=
f(tk+1)� f(tk)

F (tk+1)� F (tk)
(15)

= lk (16)

which has intuitive appeal.

t1 t2 t3

t4 t5 t6

l0

l1

l2

l4

l5

l6

l3

q(x)

x

Figure 1: Notional figure of a quantizer – that is, a nonlinearity that happens
to have a “staircase” form.
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2.2 Optimizing the Nonlinearity

We are interested in

E(q, f)2 =
(
R
qḟ)2R
q2f

(17)

=
(
R
q̇f)2R
q2f

(18)

Now since

q̇(x) =
L�1X

k=1

(lk � lk�1)�(x� tk) (19)

we have

Z
q̇f =

L�1X

k=1

(lk � lk�1)f(tk) (20)

=
L�1X

k=1

lk(f(tk+1)� f(tk)) (21)

=
L�1X

k=1

(f(tk+1)� f(tk))2

F (tk+1)� F (tk)
(22)

We also have

Z
q2f =

L�1X

k=1

l2k(f(tk+1)� f(tk)) (23)

=
L�1X

k=1

(f(tk+1)� f(tk))2

F (tk+1)� F (tk)
(24)

in which we have assumed, without loss of generality, that we have
Z

q(x)f(x)dx = 0 (25)

Putting these together, we have

E(q, f)2 =
L�1X

k=1

(f(tk+1)� f(tk))2

F (tk+1)� F (tk)
(26)

as something we need to optimize over {tk}.
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Let us di↵erentiate E(q, f)2. We have

0 =
d

dtk
E(q, f)2 (27)

= 2ḟ(tk)
f(tk)� f(tk�1)

F (tk)� F (tk�1
� f(tk)

(f(tk)� f(tk�1))2

(F (tk)� F (tk�1))2
(28)

�2ḟ(tk)
f(tk+1)� f(tk)

F (tk+1)� F (tk)
+ f(tk)

(f(tk+1)� f(tk))2

(F (tk+1)� F (tk))2
(29)

= 2ḟ(tk)lk � f(tk)l
2
k � ḟ(tk)lk+1 + f(tk)l

2
k+1 (30)

0 = 2glo(tk)(lk � lk+1)� (l2k � l2k+1) (31)

0 = 2glo(tk)� (lk + lk+1) (32)

which implies that

glo(tk) =
lk + lk+1

2
(33)

Interestingly, back and forth recursion on (16) & (33) generally converges,
and is known as the (generalized) Lloyd-Max algorithm for quantizer design.

2.3 Minimizing the MSE

Suppose we began with a di↵erent problem: we want to select {lk} and {tk}
to minimize

MSE = E{(q(x)� glo(x))
2} (34)

We write

MSE =
L�1X

k=0

Z tk+1

tk
(lk � glo(x)))

2f(x)dx (35)

Taking the derivative with respect to the levels we get

0 =
d

tlk
(MSE) (36)

=
Z tk+1

tk
(lk � glo(x)))f(x)dx (37)

or
lk = E{glo(x)|tk�1  x < tk) (38)

Taking the derivative with respect to the thresholds we find

0 =
d

ttk
(MSE) (39)

= (lk � glo(tk))
2f(tk) � (lk+1 � glo(tk))

2f(tk) (40)

= (lk � glo(tk))
2 � (lk+1 � glo(tk))

2 (41)

= (lk + lk+1 � 2glo(tk))(lk + lk+1) (42)
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hence

glo(tk) =
lk + lk+1

2
(43)

Since (38) & (43) are the same as (16) & (33), we conclude that the goals are
the same: maximizing the e�cacy is the same as minimizing the quantization
error between q(x) and glo(x). If the quantization operation is thought of
as introducing noise to glo(x), this makes sense.

3 Detection-Optimized (Ordinate) Quantization

The previous section developed equations for design of an optimal quantizer
whose quantization sets were simply-connected (i.e., convex) sets of input
data. That is, the the quantizer operated on the x-axis, the abscissa. In the
case of a monotone-increasing locally-optimal nonlinearity glo(x) that turns
out to be the best thing to do. However, (35) suggests that when glo(x) is
not monotone, then there may be better things to do. And there are

First we define the quantization regions as {Ak} (disjoint and exhaustive)
such that when xi 2 Ak the quantizer reports lk. Again with (5)

zik =

(
1 xi 2 Ak

0 xi /2 Ak

)

(44)

the fusion rule (8) still holds:

d

d✓
log(f(z))|✓=0 =

nX

i=1

L�1X

k=0

zik
ṗki(0)

pki(0)
(45)

where from (2) we have

pki(✓) = Pr(xi 2 Ak|✓) (46)

=
Z

Ak

f(x� ✓si)dx (47)

so
d

d✓
pki(✓)|✓=0 = �si

Z

Ak

ḟ(x)dx (48)

or
ṗki(0)

pki(0)
= siE{glo(x)|x 2 Ak} (49)

and we define q(x) = lk where x 2 Ak.
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Now, repeating (17), we have

E(q, f)2 =
(
R
qḟ)2R
q2f

(50)

We have
Z

qḟ =
L�1X

k=0

Z

Ak

lkḟ(x)dx (51)

=
L�1X

k=0

�lkE{glo(x)|x 2 Ak}
✓Z

Ak

f(x)dx
◆

(52)

=
L�1X

k=0

lkE{glo(x)|x 2 Ak}
✓Z

Ak

f(x)dx
◆

(53)

=
L�1X

k=0

l2k

✓Z

Ak

f(x)dx
◆

(54)

We also have, assuming
R
qf = 0,

Z
q2f =

L�1X

k=0

l2k

Z

Ak

f(x)dx (55)

=
Z

qḟ (56)

and hence (this generalizes (26)) we have

E(q, f)2 =
L�1X

k=0

l2k

Z

Ak

f(x)dx (57)

Our goal now is to optimize the {Ak}.
First, let us assume we have two sets, Aj & Ak for which lj < lk. Further,

we assume that we have subsets Bj ⇢ Aj & Bk ⇢ Ak, such that
Z

Bj

f(x)dx =
Z

Bk

f(x)dx (58)

and
E{glo(x)|x 2 Bj} > E{glo(x)|x 2 Bk} (59)

These are illustrated in figure 2. As suggested by the figure, we exchange
the two out-of-place subsets

Âj = (Aj

\
B̄j)

[
Bk (60)

Âk = (Ak

\
B̄k)

[
Bj (61)

7



Aj Ak

Bj Bk

(x)

glo(x)lj

lk

Figure 2: Cartoon suggesting the sets Aj & Ak and their (equal-probability)
subsets Bj & Bk. The key is that lj < lk, but over their subsets E{glo(x)|x 2
Bj} > E{glo(x)|x 2 Bk}. The development will switchBj toAk and likewise
Bk to Aj . Note that no change in

R
Aj

f(x)dx nor
R
Ak

f(x)dx results.

where C̄ = {8x /2 C}. We have

E(q, f)2
���
{Âk}

� E(q, f)2
���
{Ak}

=
L�1X

k=0

E{glo(x)|x 2 Âk}2
Z

Âk

f(x)dx (62)

�
L�1X

k=0

E{glo(x)|x 2 Ak}2
Z

Ak

f(x)dx

= E{glo(x)|x 2 Âj}2
Z

Âj

f(x)dx+ E{glo(x)|x 2 Âk}2
Z

Âk

f(x)dx (63)

� E{glo(x)|x 2 Aj}2
Z

Aj

f(x)dx+ E{glo(x)|x 2 Ak}2
Z

Ak

f(x)dx

=
(
R
Aj

glof �
R
Bj

glof +
R
Bk

glof)2
R
Aj

f �
R
Bj

f +
R
Bk

f
+

(
R
Ak

glof �
R
Bk

glof +
R
Bj

glof)2
R
Ak

f �
R
Bk

f +
R
Bj

f

�
(
R
Aj

glof)2
R
Aj

f
�

(
R
Ak

glof)2R
Ak

f
(64)
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=
(
R
Aj

glof �
R
Bj

glof +
R
Bk

glof)2
R
Aj

f
+

(
R
Ak

glof �
R
Bk

glof +
R
Bj

glof)2
R
Ak

f

�
(
R
Aj

glof)2
R
Aj

f
�

(
R
Ak

glof)2R
Ak

f
(65)

= 2

 Z

Bj

glof �
Z

Bk

glof

! R
Ak

glofR
Ak

f
�
R
Aj

glof
R
Aj

f

!

(66)

 Z

Bj

glof �
Z

Bk

glof

!2 
1R

Aj
f
� 1R

Ak
f

!

(67)

> 2

 Z

Bj

glof �
Z

Bk

glof

! R
Ak

glofR
Ak

f
�
R
Aj

glof
R
Aj

f

!

(68)

> 0 (69)

where the last inequality follows since
Z

Bj

f(x)dx =
Z

Bk

f(x)dx (70)

by construction.

glo(x)

xA0 A1 A2 A1

A2

A3 A2 A3 A4

Figure 3: A non-monotone glo(x) (which looks rather like that corresponding
to a Gaussian mixture) and a notional L = 5 level quantizer. Note that the
quantization regions are not simply-connected in x, but they are in glo(x).
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We therefore have the result that any quantization that is not simply
connected in glo(x) cannot be optimal, and conclude that the proper way
to quantize is over glo(x) – on the y-axis. Naturally, if glo(x) is monotone,
then this is not new. See figure 3 for a notional example of that. In order
to design an optimal quantizer it is necessary to transform x to y = glo(x),
and to use the Lloyd-Max procedure in that domain.

Note that this section is not entitled “general” quantization. It is known
that an optimal quantizer for conditionally-independent observations / sen-
sors results in simply-connected regions in terms of the local likelihood ratio
– this applies to situations in which the hypotheses are not of the additive
signal type. Even more interesting, when the observations / sensors are not
conditionally-independent. For example, the behavior observed even in the
(trivial?) case of a mean shift in correlated Gaussian noise is complex and
unexpected.
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1 Ali-Silvey Distance Measures

Certainly signal-to-noise ratio (SNR) presents an appealing way to mea-
sure detection performance. SNR determines the performance exactly in
the Gaussian shift-in-mean situation; but for more general additive-signal
problems the e�cacy, which can be thought of as an asymptotic SNR, is
appealing as well. However, it is desirable to propose performance measures
applicable in more general and non-asymptotic cases.

One such is the J-divergence

J ⌘ E

⇢
log

✓
f(x|K)

f(x|H

◆
|K

�
� E

⇢
log

✓
f(x|K)

f(x|H

◆
|H

�
(1)

which has appeal as the distance between the means of the optimal test
statistic, the log-likelihood ratio. The J-divergence is the di↵erence between
the two Kullback-Leibler numbers, and sometime just the second term

dKL ⌘ E

⇢
log

✓
f(x|H)

f(x|K

◆
|H

�
(2)

is reported and called the divergence or KL divergence. KL divergence has
much attention in information theory.

Actually the J-divergence is one example of an Ali-Silvey distance mea-
sure, for which we have

d ⌘ h(E{C(L)}) (3)

in which h(·) is a monotone-increasing function, L is the likelihood ratio and
C(·) is a convex (convec-cup) function. For J-divergence we have

h(y) = y C(y) = (y � 1) log(y) (4)

Many other possibilities exist; for example if we have

h(y) = � log(1� y/2) C(y) = (
p
y � 1)2 (5)

we have the Bhattacharyya distance, which we shall see more about soon.
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2 The Cherno↵ Bound

The Cherno↵ idea is as follows. Consider a test based on T (x) and using
threshold ⌧ .

Pf = Pr(false alarm) (6)

=
Z

I(T (x) > ⌧)f(x|H)dx (7)

= E{I(T (x) > ⌧)|H} (8)

 E{es(T (x)�⌧)
|H} (9)

= e�s⌧
E{eT (x)

|H} (10)

for any s > 0. We also have

Pm = Pr(miss) (11)

=
Z

I(T (x) < ⌧)f(x|K)dx (12)

= E{I(T (x) < ⌧)|K} (13)

 E{et(T (x)�⌧)
|K} (14)

= e�t⌧
E{eT (x)

|K} (15)

for any t < 0. Inequalities (10) and (15) are the most basic forms of the
Cherno↵ bound. It is also easy to see that if T (x) is linear in form, meaning

T (x) =
nX

i=1

hi(xi) (16)

we have

E{esT (x)
|H} = E{es

P
n

i=1
hi(xi)|H} (17)

=
nY

i=1

E{eshi(xi)|H} (18)

which bound is (loosely-speaking) exponential in n. More precisely, if hi(·) =
h(·) and the samples are identically distributed, then we can write

E{eT (x)
|H} = en log(E{esh(x)|H}) (19)

Clearly (18) and (19) are true with H replaced by K and s replaced by t,
as in (15). Note that all these are true for any s > 0 and t < 0. It hence
behooves us1 to find the “optimized” s and t that make the bounds tightest.

1
. . . or else we should be hooved . . .
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Things become even more interesting when we assume that T (x) is the
log-likelihood ratio (T (x) = log(L(x))), and especially so when the data is
conditionally iid. Define

µT,H(s) ⌘ log(E{esL(x)|H}) (20)

µT,K(t) ⌘ log(E{etL(x)|K}) (21)

so we have

Pf = eµT,H(s)�s⌧ (22)

Pm = eµT,K(t)�t⌧ (23)

(24)

Now we can write

µT,K(t) = log(E{et log(L(x))|K}) (25)

= log(E{L(x)t|K}) (26)

= log(
Z

L(x)tf(x|K)dx) (27)

= log

 Z ✓
f(x|K)

f(x|H)

◆t

f(x|K)dx

!

(28)

= log

 Z ✓
f(x|K)

f(x|H)

◆t+1

f(x|H)dx

!

(29)

= µT,H(t+ 1) (30)

Then we have

Pm = eµT,K(t)�t⌧ (31)

= eµT,H(t+1)�t⌧ (32)

= eµT,H(s)�(s�1)⌧ (33)

= e⌧eµT,H(s)�s⌧ (34)

meaning that both false alarm and miss bounds have the same form.
Now, since our search is for optimized bounds under s > 0 and t < 0, if

we can minimize µT,H(s) for 0 < s < 1 then we do not need to consider the
two bounds separately at all. Hence let us define

 (s) = eµT,H(s)�s⌧ (35)

= E{es(T (x)�⌧)
|H) (36)

3



Clearly we have

 (0) = 1 (37)

 ̇(0) = E{(T (x)� ⌧)es(T (x)�⌧)
|H)

���
s=0

(38)

= E{T (x)|H}� ⌧ (39)

 ̈(0) = E{(T (x)� ⌧)2es(T (x)�⌧)
|H)

���
s=0

(40)

� 0 (41)

If we particularize to T (x) = log(L(x)) we can go further, and write

 ̇(1) = E{(T (x)� ⌧)es(T (x)�⌧)
|H)

���
s=1

(42)

= e�⌧

Z
(log(L(x))� ⌧)elog(L(x))f(x|H)dx (43)

= e�⌧

Z
(log(L(x))� ⌧)L(x)f(x|H)dx (44)

= e�⌧

Z
(log(L(x))� ⌧)f(x|K)dx (45)

= E{T (x)|K}� ⌧ (46)

It is reasonable to expect that

E{log(L(x))|H} < ⌧ (47)

E{log(L(x))|K} > ⌧ (48)

Assuming so, we have from (40) that  (s) is convex. Equations (37), (39)
and (47) tell us that  (s) passes through the point (0, 1) with a negative
slope; and (46) and (48) that  (s) has a positive slope when s = 1. These
facts together tell us that a minimum value for  (s) (and therefore for
µT,H(s)) can be found for 0 < s < 1, and hence we can combine the bounds
(in this log-likelihood ratio case) as

Pf  eµT,H(s0)�s0⌧ (49)

Pm  eµT,H(s0)+(1�s0)⌧ (50)

In the case that we have conditionally independent observations

µ(s) = n log
✓Z ✓

f(x|K)

f(x|H)

◆s

f(x|H)dx
◆

(51)

= n log
✓Z

f(x|K)sf(x|H)1�sdx
◆

(52)
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and
d

ds
(µ(s)� s⌧)|

s=s0
= 0 (53)

for some 0 < s0 < 1. This specific form of Cherno↵ bound applies only to
a log-likelihood ratio test, and (47) and (48) must hold. Note also that for
iid data, µ(s) / n – this bound is exponential in the number of samples n.

3 The Bhattacharyya Bound

Note that (49) and (50) hold irrespective of s0 as long as 0 < s0 < 1; we do
not need the “optimal” s0 as in (53). One good choice is s0 = 0.5, for which

µ(1/2) =
Z q

f(x|H)f(x|K)dx (54)

This yields the Bhattacharyya bound, and it often both quite good and easy
to use.

For the case that we are performing locally-optimal detection of a con-
stant signal

H : xi = ⌫i

K : xi = ⌫i + ✓ (55)

in which {⌫i} are iid with pdf f(x) and we additionally have f(�x) = f(x)
(a symmetric density, not so very uncommon) we can write for a single
sample (to be multiplied by n in the bound)

eµT,H(s) = n log
✓Z

f(x|K)sf(x|H)1�sdx
◆

(56)

= n log
✓Z

f(x� ✓)sf(x)1�sdx
◆

(57)

= nµ(s) (58)

eµT,H(1�s) = n log
✓Z

f(x� ✓)1�sf(x)sdx
◆

(59)

= n log
✓Z

f(✓ � x)1�sf(x)sdx
◆

(60)

= n log
✓Z

f(y)1�sf(✓ � y)sdx
◆

(61)

= n log
✓Z

f(y)1�sf(y � ✓)sdx
◆

(62)

= nµ(s) (63)
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which implies that the bound is minimized by s = 1/2 – the Cherno↵ bound
is the Bhattacharyya bound in such cases. But the Bhattacharyya bound is
always valid; it is not always the tightest bound, but it is easy to find and
to use.

4 Examples

4.1 Laplace Noise

Suppose we have

H : xi = ⌫i

K : xi = ⌫i + ✓ (64)

with threshold ⌧ = 0, log-likelihood ratio detection and {⌫i} iid Laplace

f(x) =
1

2
e�|x| (65)

Since f(x) is symmetric we know the applicable Cherno↵ bound is that with
s = 1/2 – the Bhattacharyya bound. We write

µ(1/2) = n log

 Z
1

�1

r
1

2
e�|x|

1

2
e�|x�✓|dx

!

(66)

= n log

 Z 0

�1

1

2
ex�✓/2dx +

Z
✓

0

1

2
e�✓/2dx

+
Z

1

✓

1

2
e�x+✓/2dx

◆
(67)

= n log
✓
1

2
e�✓/2 +

✓

2
e�✓/2 +

1

2
e�✓/2

◆
(68)

= n log
⇣
(1 + ✓/2)e�✓/2

⌘
(69)

For the case that ✓ = 1 (note that we do not need to make a small-signal
assumption with Cherno↵) we get

µ(1/2) ⇡ �0.0945n (70)

Pf  e�0.0945n (71)

Pm  e�0.0945n (72)

since the threshold is zero.
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4.2 Exponentials

Suppose we have

H : xi ⇠ e�xu(x) (73)

K : xi ⇠ 2e�2xu(x) (74)

and again2 ⌧ = 0. We have

µ(s) = n log
✓Z

(2e�2x)s(e�x)1�sdx
◆

(75)

= n log
✓Z

1

0
2se�sxe�xdx

◆
(76)

= n log
✓

2s

s+ 1

◆
(77)

= n(s log(2)� log(s+ 1)) (78)

We di↵erentiate to find

0 =
d

ds
µ(s) (79)

= log(2)�
1

s+ 1
(80)

hence

s0 =
1

log(2)
� 1 ⇡ 0.443 (81)

We substitute to find

µ(s0) = n (1� log(2) + log(log(2))) ⇡ �0.0597n (82)

hence

Pf  e�0.0597n (83)

Pm  e�0.0597n (84)

since the threshold is zero.

4.3 Exponentials with Threshold

Let us use the same example as (74), except that the testing threshold (for
the log-likelihood ratio) is ⌧ 6= 0. We still have (78), but now we must

2
Please be aware that with nonzero ⌧ the full (53) must be solved.
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optimize by di↵erentiating µ(s)� s⌧ . We get

0 =
d

ds
(µ(s)� s⌧) (85)

= n
✓
log(2)�

1

s+ 1

◆
� ⌧ (86)

hence

s0 =
1

log(2e�⌧/n)
� 1 (87)

Now suppose we choose ⌧ = 2n. We get s0 = �1.765, and clearly this does
not make sense in that we know 0 < s0 < 1. The reason is illuminating. For
the test (74) we know that the LLR is

T (x) = log(2)� x (88)

meaning that its maximum (single sample) value is log(2) ⇡ 0.693.
That is, this test amounts to �(x) = 0 if ⌧ > log(2). So let us try a

non-trivial threshold: ⌧ = 0.5n. We get s0 = 4.177 and hence µ = 1.251
which implies

Pf  eµ(s0)�s0⌧ (89)

= e�0.833n (90)

Note that this does not work for the miss probability, since s0 > 1. Why is
this? The reason is (47) and (48), repeated

E{log(L(x))|H} < ⌧ < E{log(L(x))|K} (91)

which was the requirement for the minimizing 0 < s0 < 1. Now since

E{log(L(x))|H} = E{log(2)� x)|H} = log(2)� 1 = �0.307 (92)

E{log(L(x))|K} = E{log(2)� x)|H} = log(2)� 1/2 = 0.193 (93)

we see that for a valid Cherno↵ bound for both Pf and Pm is possible only
if �0.3069n < ⌧ < 0.1931. In fact, returning to (33) we see its minimizing
nonpositive s = 1, hence the best Cherno↵ can do is Pm  1.

To be legal, let us choose ⌧ = 0.1n; we get

s0 = 0.686 (94)

µ(s0) = �0.047 (95)

and hence

Pf  eµ(s0)�s0⌧ = e�0.116n (96)

Pm  eµ(s0)�(1�s0)⌧ = e�0.078n (97)

which, due to the non-zero threshold, are not the same.
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5 Importance Sampling

5.1 Estimation of Small Probabilities

Suppose we want to estimate a small probability

↵ ⌘ Pr(x 2 ⌦) (98)

This may sound trivial, and it would be if we were interested, say, in the
⌦ = {x : x > ⌧}. But suppose it is not so simple, and ⌦ is the set of
noise samples3 that produces an error in an OFDM system with LDPC,
zero-forcing equalization and carrier-o↵set recovery. We have no hope of
an analytic probability calculation, all we can do is simulate and count the
errors. That is, we estimate

↵̂ =
1

N

NX

i=1

I(xi 2 ⌦) (99)

where I is the indicator, N is the number of Monte Carlo trials, these
indexed by i. It is vary simple to see that

E{↵̂} =
1

N

NX

i=1

E{I(xi 2 ⌦)} (100)

=
Z

⌦
f(x)dx = ↵ (101)

which is good news, but

V ar{↵̂}

(E{↵̂})2
⇡

↵/N

↵2
=

1

N↵
(102)

which is not good news. Equation (102) means that if you want the standard
deviation of ↵̂ to be (say) less than 10% of its value, you need N > 100/↵
MC trials; and if ↵ is 10�8 this can be a chore.

Fortunately we have importance sampling4 to help. Consider a new es-
timator

↵̂ =
NX

i=1

I(xi 2 ⌦)
f(xi)

q(xi)
(103)

3
Don’t worry if this OFDM stu↵ means nothing to you; the point is that it’s a com-

plicated event.
4
Much of this section is taken from the notes for Advanced Signal Processing, ECE

6123.
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where f(·) is the true probability density governing whatever is random
about your problem and q(·) some other “importance” pdf that the samples
used to estimate ↵̂ are actually drawn from. For example, we might have
⌦ = {(x1, x2) : (x1 � 10)2 + (x2 � 15)2  1} and f(·) bivariate Gaussian
with mean zero and unity variance. It is fairly clear that ↵̂ from (99) will
include exactly no indicators that “happen” for any reasonable value of N
– it is useless. But suppose we use (103) with q(·) to mean a Gaussian pdf
with mean (10, 15) and variance of 0.5: then many indicators will fire, and
each of them will force the inclusion to the sum in (103) of many relatively
small values determined by the importance weights p(xi)/q(xi).

The variance of (103) is easily seen to be

V ar(↵̂) =
1

N

 Z

⌦

f(x)2

q(x)
dx� ↵2

!

(104)

which is illuminating for two reasons. The first is that it is minimized
(actually cut down to zero) by

q(x) = f(x|x 2 ⌦) =
f(x)I(x 2 ⌦)

↵
(105)

which gives us the helpful information that if we already knew the answer
we could easily use MC techniques to find the answer. This actually really
is useful, since it tells us that there is no “magic bullet” for importance-
sampling – choosing a good q(·) is an art form. But (104) also suggests
intuition: if we want to have a low variance we should try to reduce the
variation of f(·)/q(·) of ⌦ as much as we can. By that logic choosing q(·) to
have mean (9, 14) and unity variance in the previous example may be better
than the q(·) given; and mean mean (11, 16) worse.

It is worth mentioning that in the case of binary hypothesis testing, a
good importance density is

q(x) = f(x|K) (106)

when used to estimate the probability of false alarm ↵. Since generally
Pd (i.e., �) is usually not that extreme, importance sampling is likely not
necessary under K.

5.2 Importance Sampling for Moments

Consider the situation as in figure 1, in which we wish to calculate the
expected value of a function g(x) under the pdf f(x). A direct MC im-
plementation will probably not work very well, since the “active” part of

10



x

q(x)

g(x) [for moments]

f(x)

1

g(x) [for events]

Figure 1: Illustration of the way the true pdf (f(x)), the importance density
(q(x)) and the desired function whose expected value is being sought (g(x)).

g(x) occurs where samples from p(x) are rare. Suppose instead we simulate
under q(x) as also indicated in the plot. Then we get

ḡ =
1

N

NX

i=1

g(xi)
f(xi)

q(xi)
(107)

so that

E{ḡ(x)} =
Z

g(x)
f(x)

q(x)
q(x)dx = E{g(x)} (108)

meaning that the importance-sampling estimator is unbiased for this case,
too.
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1 Introduction

There are two main sections in this chapter: sequential detection and quick-
est detection. They are both related by their sequential “anytime” nature
and their mathematical underpinnings. However, they di↵er strongly in the
problems that they attack. Sequential detection refers to a rather simpler
problem, more closely related to the standard hypothesis testing we have
previously seen; quickest detection is rather di↵erent.

In a sequential detection problem either H or K is true. Our aim is to
save time: if the evidence fo K (say) mounts to an almost overwhelming
certainty before the detection record of 1  i  n is up – maybe at i = n/2,
then why continue? Why not save time by making the decision now? To
make it concrete, suppose we are interested in

H : xi = ⌫i � 1

K : xi = ⌫i + 1 (1)

and we use

T (x) =
10X

i=1

xi (2)

and ⌧ = 5. Now suppose after 5 samples we have T (x) = 8; that means

Pr(� = 0|H) = 0.10 (3)

Pr(� = 0|K) = 0.005 (4)

so perhaps simply ending the test makes sense. The key challenges for
sequential detection are to develop the optimal scheme – the Wald test or
SPRT – to understand what optimal means in this context, and compute
the performance, which will turn out to be in terms of run-length as opposed
to ↵ and �.

In a quickest detection problem H is always true at the start. There
may be a switch to K at some point, in which case it would be desirable to

1



know it as quickly as possible. On the other hand there may be no change
(H always remains true). The notional problem here is the assembly line:
let’s suppose that under nominal conditions the factory produces gearboxes
that are non-functional 1% of the time; when the line is malfunctioning this
imperfection rate increases to 5%. Note that bad gearboxes happen in both
situations, and the key is to figure when enough bad gearboxes have recently
appeared that one can raise an alarm. This problem does not at first blush
appear related to our usual detection problem nor to the sequential problem.
However, the SPRT is the basis for the optimal Page procedure or CUSUM,
and the issues that arise are to define optimality and to determine the run-
lengths: the average times between false alarms and the average delay to
detection. As with the sequential problem the probabilities of error are of
less interest, and in fact any nontrivial procedure must have any reasonably-
defined ↵ = � = 1, since eventually an alarm will be raised no matter the
situation. The issue is: how often?

We will also show, briefly, that when the change-of-hypothesis process
that underlies the observations can be modeled as Markov – that is, the
observations process is a hidden Markov model (HMM) – then there is an
appropriate Bayesian approach that attempts to estimate the underlying
Markov state. This is called the Shiryaev testing procedure.

Note that both sequential detection and quickest detection have their
place in target tracking. Specifically, once a tentative track is initiated a
sequential test begins: if it passes then the track becomes confirmed; if it
fails, the tentative track is deleted. But once a track is confirmed a quickest
detection procedure should immediately begin, with null hypothesis H that
the track is extant; once it declares for the alternative K that the track no
longer exists, the track is terminated.

2 Sequential Detection

2.1 The SPRT

With the usual definitions of our simple test – f(x|✓), ⇥H = ✓H and ⇥K =
✓K – we additionally define the stopping rule �n(x) 2 {0, 1} such that

N� ⌘ {�N (x) = 1 and �m(x) = 0 8 1  m < N} (5)

and a sequence of decision rules {�n(x)} such that the final decision is �N (x).

2



The sequential probability ratio test (SPRT or Wald test) uses

�n(x) =

8
><

>:

1 Ln(x) � B
1 Ln(x)  A
0 A < Ln(x) < B

(6)

�n(x) =

8
><

>:

1 Ln(x) � B
0 Ln(x)  A
� A < Ln(x) < B

(7)

in which Ln(x) is the likelihood ratio of the first n samples of x. The
appearance of the likelihood ratio is not surprising. The last line in (7)
indicates a “don’t call” situation.

LLR

b

a

decide for K, at time N

Figure 1: Notional figure of an SPRT. In this case we are using the logarithm
of the likelihood ratio. The impact of this on the designed thresholds will
be discussed shortly.

The means to set the thresholds A and B may indeed be surprising,
however. Suppose we write

QH

n ⌘ {x : N� = n and �n(x) = 0} (8)

QK

n ⌘ {x : N� = n and �n(x) = 1} (9)

and note that for n 6= m we know

QH

n

\
QH

m = ; (10)

QK

n

\
QK

m = ; (11)

It is clear that we can define

⌦H ⌘

1[

n=1

QH

n (12)

⌦K ⌘

1[

n=1

QK

n (13)
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as the decision region for K.
Now we have

↵ = Pr(x 2 ⌦K |H) (14)

=
1X

n=1

Pr(x 2 QK

n |H) (15)

=
1X

n=1

Z

QK
n

f(x|✓H) (16)



1X

n=1

Z

QK
n

1

B
f(x|✓K) (17)

=
1

B

1X

n=1

Pr(x 2 QK

n |K) (18)

=
�

B
(19)

in which (17) follows because for QK
n we must have Ln(x) � B. We also

have

1� � = Pr(x 2 ⌦H |K) (20)

=
1X

n=1

Pr(x 2 QH

n |K) (21)

=
1X

n=1

Z

QH
n

f(x|✓K) (22)



1X

n=1

Z

QH
n

Af(x|✓H) (23)

= A
1X

n=1

Pr(x 2 QH

n |H) (24)

= A(1� ↵) (25)

in which (23) follows because for QH
n we must have Ln(x)  A. Putting

(19) together with (25) we have

↵ 
�

B
(26)

1� �  A(1� ↵) (27)

Suppose we treat these as equality, under the reasonable assumption that
the test statistic barely scrapes above or below the corresponding threshold

4



– the “excess over the boundaries” is negligible. We get

A =
1� �

1� ↵
(28)

B =
�

↵
(29)

in which it musts be remembered that these are thresholds that the likelihood
ratio should use – if one uses the T (x) = log(L(x)) one should use log(A)
and log(B), and of course if some other transformation g(L(x)) is to be used
then g(·) should be applied to the thresholds.

It is quite remarkable that the thresholds are given explicitly in terms
of the desired false alarm and missed detection rates – in this regard, then,
the sequential situation is simpler than fixed-length detection. Note also
that if we use these desired ↵d and �d to design the thresholds, the actual
performance, from (19) and (25), is

↵ 
�

B
(30)


↵d�

�d
(31)


↵d

�d
(32)

1� �  A(1� ↵) (33)


1� �d
1� ↵d

(1� ↵) (34)


1� �d
1� ↵d

(35)

so assume both ↵d and 1� �d there is little loss.

2.2 The Expected Run Lengths

First, note that this formulation applies to iid samples. Suppose we define
the running sum as

sn =
nX

i=1

log
✓
f(xi|K)

f(xi|H)

◆
(36)

=
nX

i=1

yi (37)

which applies to the log-likelihood ratio – this will be our assumed test
format. Let us define

pnj(sn) ⌘ the pdf of sn given j is true (38)

5



pnj(sn|N = m) ⌘ the pdf of sn given j is true and N� = m  n (39)

pnj(sn|N  n) ⌘ the pdf of sn given j is true and N�  n (40)

qnj(sn) ⌘ the pdf of sn given j is true and N� = n (41)

in which j 2 {H,K}. Now it is easy to see that we have

pnj(sn|N = m) =
Z

qmj(�)p(n�m)j(sn � �)d� (42)

Now we can also have

pnj(sn|N  n) =
nX

m=1

Z
qmj(�)p(n�m)j(sn � �)d�

Pr(N� = m|j)

Pr(N�  m|j)
(43)

Let us assume that n is large so that for most of the terms in the sum
Pr(N�  m|j) ⇡ 1:

pnj(sn|N  n) =
nX

m=1

Z
qmj(�)p(n�m)j(sn � �)d�Pr(N� = m|j) (44)

Let us take the moment generating functions

 mj(t) ⌘ E{etsm |j} (45)

=
Z

etsmqmj(sm)dsm (46)

and
Mj(t) ⌘ E{etyi |j} (47)

for just a single sample. Clearly we have for a fixed n

E{etsn} =
Z

etsnpnj(s)dsn (48)

= [Mj(t)]
n (49)

Examining (44) and noting that n is very large – and hence a decision must
have been made prior to n: N�  n – we take the moment-generating
function of both sides of (44). The left-hand side is the same as (49); the
same is true for the p term on the right. We have

[Mj(t)]
n =

nX

m=1

 mj(t) [Mj(t)]
n�m Pr(N� = m|j) (50)
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We simplify and come up with the remarkable

1 =
nX

m=1

 mj(t) [Mj(t)]
�m Pr(N� = m|j) (51)

=
nX

m=1

E{etsm |j} [Mj(t)]
�m Pr(N� = m|j) (52)

= E{etsN [Mj(t)]
�N

|j} (53)

where we have, for the sake of pulchritude, used N to denote N�. The
marvelous last relation, (53), is commonly known as Wald’s Identity.

Now, let us di↵erentiate (53):

d

dt

⇣
E{etsN [Mj(t)]

�N
|j}
⌘

= E{sNetsN [Mj(t)]
�N

�NṀj(t) [Mj(t)]
�N�1

|j} (54)

Now by definition, we have

Mj(t) ⌘ E{etyi |j} (55)

Mj(0) = 1 (56)

Ṁj(0) = E{yi|j} (57)

M̈j(0) = E{y2i |j} (58)

Hence we evaluate (54) at t = 0 to get

E{sN |j} = E{N |j}E{yi|j} (59)

Note that we know E{yi|j} trivially; and E{sN |j} can be approximated
straightforwardly from the thresholds and the error probability. In the
case that E{yi|j} = 0, meaning that (59) provides us no information about
E{N |j}, we di↵erentiate (54) again to get

d2

dt2

⇣
E{etsN [Mj(t)]

�N
|j}
⌘

=
d

dt
E

("

sN �N

 
Ṁj(t)

Mj(t)

!#

etsN [Mj(t)]
�N

����� j

)

(60)

= E

8
<

:

0

@
"

sN �N

 
Ṁj(t)

Mj(t)

!#2
�N

M̈j(t)Mj(t)� Ṁj(t)2

Mj(t)2

1

A

⇥ etsN [Mj(t)]
�N

������
j

9
=

; (61)
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We evaluate (61) at t = 0 and, assuming Ṁ(t) = 0, get

E{s2N |j} = E{N |j}E{y2i |j} (62)

The second moments can be read as variances since E{yi|j} = 0. Note that
a log-likelihood ratio will not have a zero mean under either hypothesis.
However, Wald’s Identity holds for more than just optimal tests.

As an example, consider

H : xi = ⌫i

K : xi = ⌫i + 1 (63)

in which {⌫i} are unit normal and independent. We design for ↵ = 0.1%
and � = 99%. Via Wald’s Approximations we have

B =
�

↵
=

.99

.001
= 990 (64)

b = log(B) = 6.9 (65)

A =
1� �

1� ↵
=

.01

.999
= 0.01001 (66)

a = log(B) = �4.6 (67)

We also have

yi = log
✓
f(xi)|K

f(xi)|H

◆
= xi � 0.5 (68)

Now

E{yi|H} = �0.5 (69)

E{yi|K} = +0.5 (70)

E{sN |H} = (1� ↵)a+ ↵b = �4.59 (71)

E{sN |K} = (1� �)a+ �b = 6.79 (72)

Hence

E{N |H} =
E{sN |H}

E{yi|H}
= 9.2 (73)

E{N |K} =
E{sN |K}

E{yi|K}
= 13.6 (74)

It is interesting to compare this to a fixed length test that achieves the same
performance. We have

↵ = Q

 
⌧ �NE{yi|H}
p
NV{yi|H}

!

(75)

⌧ =
p

NQ�1(.001)�N/2 (76)
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hence

� = Q

 
⌧ �NE{yi|K}
p
NV{yi|K}

!

(77)

0.99 = Q
⇣
Q�1(.001)�

p

N
⌘

(78)

This can be solved to get N ⇡ 30. It is actually typical to get a gain of 2-3
via sequential testing.

fixed sample size (FSS) test

more general test

Figure 2: These are two di↵erent tests. The upper cartoon illustrates the
fixed-length test, and the lower a more free-wheeling test that has fixed-
length and sequential characteristics.

2.3 The Wald-Wolfowitz Theorem

The notion of optimality is rather slippery in the sequential situation: we
could always improve ↵ and � if we took more samples; and we could always
get by with fewer samples if we absorbed the hit in ↵ and �. The Wald-
Wolfowitz theorem formalizes this.

Consider the SPRT (�w, �w) and any other sequential procedure (�, �).
The theorem states that if

Pf (�, �)  Pf (�
w, �w) (79)

Pd(�, �) � Pd(�
w, �w) (80)
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then we must have

E{N�|H} � E{N�w |H} (81)

E{N�|K} � E{N�w |K} (82)

In words then, any test that causes fewer errors than the SPRT must take
longer to do so. With reference to figure 2 this is perhaps surprising.

Consider that we formulate a stopping rule that is similar to the lower
plot: that is, we use the SPRT, but decide that after a certain number
of samples – say, the expected number of samples the SPRT takes – we
simply stop and make a decision. Clearly the expected number of samples
such a strategy would use is no more than the SPRT with those upper and
lower thresholds would use. However, the Wald-Wolfowitz Theorem insists
that this does not apply, since the probabilities of error must exceed the
SPRT’s. The Theorem goes further, however: it says that if an attempt were
made to adjust the upper and lower thresholds outwards so that the error
probabilities matched the SPRT’s, that attempt would end in failure since
the thresholds would have to be infinite. Alternatively, if the “hard decision”
boundary were placed somewhere greater than the SPRT’s expected run
length, then the upper and lower thresholds could be chosen to match the
SPRT’s error probabilities; but then the expected run length of this modified
test would, disappointingly, exceed that of the SPRT. It is surprising.

overall min 

sufficient change 

cumula2ve 

LLR 

Figure 3: The notional sequential procedure to alert for a change in dis-
tribution. The idea, from (84), is to see if the recent evidence for K is
su�cient.
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3 Quickest Detection

3.1 The Page Test

Here we are not interested in the traditional detection problem in which
either H or K is true. In quickest detection the samples always begin (at
time i = 0) as governed by H; and there may be a change to K at some
unknown time n0. That is,

xi ⇠ f(xi|H) i = 1, 2, . . . , n0

xi ⇠ f(xi|K) i = n0 + 1, n0 + 2, . . . (83)

and all are assumed independent. Intuition suggests the following sequential
procedure:

Declare a change has taken place when ⌃n � min
m<n

{⌃m} > h (84)

in which

⌃n ⌘

nX

i=1

log
✓
f(xi|K)

f(xi|H)

◆
(85)

With reference to figure 3 we see that the procedure might be thought
equivalent to the Page or CUSUM (cumulative sum1) procedure, which is

Declare a change has taken place when Sn > h (86)

in which

Sn ⌘ max
⇢
Sn�1 + log

✓
f(xn|K)

f(xn|H)

◆
, 0
�

(87)

is the CUSUM. Actually any

Sn ⌘ max {Sn�1 + g(xn), 0} (88)

is fine as long as

E{g(xi)|H} < 0 (89)

E{g(xi)|K} > 0 (90)

This is pictured in figure 4.
Optimality is only assured if g(x) is the log-likelihood ratio; but since

we want to be able to use the Page procedure in cases in which we are not
sure of the hypotheses2

1
The Matlab command “cumsum” does not implement the CUSUM.

2
We probably know f(xn|H), either by model or because we can estimate it fairly well

based on the recent history. Hence uncertainly is especially applicable to the case that

f(xn|K) is not known precisely, meaning that we may not know how “strong” the change

is. But any g(·) that satisfies (90) is acceptable.
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h 

change 

Page test 

Figure 4: The Page procedure to alert for a change in distribution. The
CUSUM, from (86), is equivalent to what is shown in figure 3.

The Page idea actually works remarkably well. In figure 5 we show a
change from N (�0.2, 1) to N (+0.2, 1) at time n = 100. The change is not
really perceptible to the eye, at least not from the data itself; however the
Page procedure finds it easily, with an acceptable delay. See also figure 6.

Now, as indicated in the early discussion, ↵ and � are not really at
issue here: both are unity unless the situation is trivial. Hence performance
is measured in terms of average delay to detection D̄ and average time
between false alarms T̄ . The Page procedure can be shown to be optimal
for independent data3 in these terms, in that for a given T̄ any other test
has at least as large a D̄.

3.2 Performance

For now, let us model a sequential test with lower threshold b and upper
threshold h: b < 0 < h and we assume that E{g(xi)|H} < 0 < E{g(xi)|K}

as in (90). We define

P (✓) = Pr(Wald test (b, h) ends at b) (91)

M(✓) = E{number of samples in Wald test (b, h)} (92)

Mh(✓) = E{number of samples in Wald test (b, h) ending at h} (93)

Mb(✓) = E{number of samples in Wald test (b, h) ending at b} (94)

3
For dependent data there are results – for example of Markov processes – but little of

general applicability.
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Figure 5: A typical example of the Page test finding a change from
N (�0.2, 1) to N (+0.2, 1) at time n = 100.
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Figure 6: Similar to figure 5, except a change from N (�0.1, 1) to N (+0.1, 1)
at time n = 1000. smaller changes take longer.

Nb(✓) = E{number of samples in Page test} (95)

where the condition on ✓ is obvious. Now we have

Nb(✓) =
1X

m=0

E{number of samples given m resets at b}

⇥ Pr(m resets at b before ending at h) (96)
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=
1X

m=0

[Mh(✓) +mMb(✓)]P (✓)m(1� P (✓)) (97)

= Mh(✓) +Mb(✓)
P (✓)

(1� P (✓))
(98)

=
M(✓)

1� P (✓)
(99)

since by definition

M(✓) = P (✓)Mb(✓) + (1� P (✓))Mh(✓) (100)

We are interested in Nb(✓)|b=0 so that this repeated Wald test is the same
as the Page test.

From Wald’s Identity, given there is a negative bias on the test under H,
we have

M(✓) =
P (✓)b+ (1� P (✓))h

E{g(xi)|✓}
(101)

Unfortunately this means Nb(✓)|b=0 is not well-defined, since

lim
b!0

P (✓) = 1 (102)

means we have
lim
b!0

M(✓) = 0 (103)

and (99) fails.
Now we can write

Nb(✓) =
P (✓)b

(1� P (✓))E{g(xi)|✓}
+

h

E{g(xi)|✓}
(104)

from insertion of (101) into (99). We examine Wald’s Identity

E{etsM [�✓(t)]
�M

|✓} = 1 (105)

where, to repeat

sM = the value of the SPRT at termination (106)

M = the number of samples to the SPRT’s termination (107)

�✓(t) = E{etg(xi)|✓} (108)

in which we have adjusted notation from (53) to reflect what we need now.
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fqH(t)

1

tt(qH)

fqK(t)

1

tt(qK)

Figure 7: The moment generating functions from (108) for ✓H and ✓K . What
is of interest are the “roots”’ (where �✓(t) = 1) under the two hypotheses.

Consider this moment generating function �✓(t). We have

�✓(0) = E{etg(xi)|✓}
���
t=0

= 1 (109)

�̇✓(0) = E{g(xi)e
tg(xi)|✓}

���
t=0

= E{g(xi)|✓} (110)

�̈✓(0) = E{g(xi)
2etg(xi)|✓}

���
t=0

� 0 (111)

lim
t!1

�✓H (t) = lim
t!1

E{etg(xi)|✓H} = 1 (112)

lim
t!�1

�✓K (t) = lim
t!�1

E{etg(xi)|✓K} = 1 (113)

To justify (112), first admit that (112) must be true if Pr(g(xi) > 0|✓H) > 0;
this is easy to see. But if Pr(g(xi) > 0|✓H) = 0 then either Pr(g(xi) >
0|✓K) = 0 as well (and this makes little sense given the CUSUM structure)
or else the Page procedure needs to modified to accept it. The modification
would be that – since g(xi) > 0 can only happen under K – then the testing
strategy amounts to waiting for an xi such that g(xi) > 0 and then declaring
a change. There is nothing intrinsically wrong with this strategy, but it
eviscerates the analysis4 we are about to perform, in which we attempt to
find a relation between T̄ and the threshold h. Similar comments apply to
(113): we have to assume that Pr(g(xi) < 0|✓K) > 0 else use some di↵erent
sort of analysis.

This yields the moment generating function behaviors seen in figure 7
and illustrates that there must exist at least one non-zero “root” (where
�✓(t) = 1), a positive root under H since E{g(xi)|✓H} < 0 and a negative

4
That is, we have to assume that Pr(g(xi) > 0|✓H) > 0, with the knowledge that

otherwise T̄ = 1 and D̄ is given by the mean of a geometric pmf.
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root under K since E{g(xi)|✓K} > 0. Let us call such a root t(✓). Since the
SPRT can only end in b or h, we evaluate (105) at t(✓) and get

et(✓)bP (✓) + et(✓)h(1� P (✓)) = 1 (114)

We can solve this for P (✓) as

P (✓) =
1� et(✓)h

et(✓)b � et(✓)h
(115)

P (✓)

1� P (✓)
=

1� et(✓)h

et(✓)b � 1
(116)

We can insert this to (104) and get

Nb(✓) =
1

E{g(xi)|✓}


(1� et(✓)h)

b

et(✓)b � 1
+ h

�
(117)

Via L’Hopital we know

lim
b!0

⇢
b

et(✓)b � 1

�
=

1

t(✓)
(118)

hence

N0(✓) = lim
b!0

{Nb(✓)} (119)

=
1 + ht(✓)� eht(✓)

t(✓)E{g(xi)|✓}
(120)

which is the fundamental equation describing Page performance.
Now let us assume that h is large – that would be what we want, to

achieve a large T̄ . Then recalling that E{g(xi)|✓H} < 0 and hence t(✓H) > 0,
we approximate (120) under H as

T̄ ⇡
�eht(✓H)

t(✓H)E{g(xi)|✓H}
(121)

in which the negativity of E{g(xi)|✓H} should be recalled. Further, since
E{g(xi)|✓K} > 0 and hence t(✓K) < 0, we approximate (120) under K as

D̄ ⇡
h

E{g(xi)|✓K}
(122)
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If we therefore define

⌘ ⌘
log(T̄ )

D̄
(123)

⇡
ht(✓H)� log(t(✓H))� log(�E{g(xi)|✓H})⇣

h

E{g(xi)|✓K}

⌘ (124)

⇡ t(✓H)E{g(xi)|✓K} (125)

This is truly remarkable: the average time between false alarms is (asymp-
totically, as h ! 1) exponential in the average delay to detection. That
is, if we have a test with T̄ = 103 and D̄ = 10, we could get T̄ = 106 and
D̄ = 20.

In the case that

g(x) = log
✓
f(x|✓K)

f(x|✓H)

◆
(126)

we have the equation defining t(✓H) as

1 = E{et(✓H)g(x)
} (127)

=
Z ✓

f(x|✓K)

f(x|✓H)

◆t(✓H)

f(x|✓H)dx (128)

=
Z

f(x|✓K)t(✓H)f(x|✓H)1�t(✓H)dx (129)

(130)

which means t(✓H) = 1 and

⌘ = E{g(xi)|✓K} (131)

=
Z

log
✓
f(x|✓K)

f(x|✓H)

◆
f(x|✓K)dx (132)

which is the “divergence” – one term in the J-divergence.
It should be noted that Wald’s approximations for the run-lengths, on

which the Page analysis is based, are predicated on the assumption that the
“excess over the boundary” is negligible relative to the boundary. In the
Page case, while this may be true for a crossing of the upper boundary h,
it is manifestly not so for the lower boundary b ! 0�. As a result, there
is some inaccuracy in the analysis. More accurate expressions have been
derived by Siegmund (“Siegmund’s Correction Terms”) – while these are
based on some rather gross approximations, the results seem to be fairly
accurate.
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3.3 An Example

Not too surprisingly, let us look at

f(x|✓) =
1

p
2⇡

e�(x�✓)2/2 (133)

where ✓H = 0 and ✓K = µ. To explore the role of the “bias,” let us write

g(x) = x� � (134)

Now

�✓H (t) = E{etg(x)|✓H} (135)

=
Z

et(x��) 1
p
2⇡

e�x
2
/2dx (136)

=
Z

1
p
2⇡

e�(x�t)2/2dxe�t�+t
2
/2 (137)

= e�t�+t
2
/2 (138)

Hence if we seek
�✓H (t(✓H)) = 1 (139)

we have

�t(✓H)� + t(✓H)2/2 = 0 (140)

t(✓H) = 2� (141)

as the non-zero root. Continuing, we have

⌘ = t(✓H)E{g(xi)|✓K} (142)

= 2�(µ� �) (143)

and naturally this is optimized for

� = µ/2 (144)

meaning that g(x) is the log-likelihood ratio, and if we used that we would
get ⌘ = µ2/2.

Recall that from (121) and (122) we have

T̄ ⇡
�eht(✓H)

t(✓H)E{g(xi)|✓H}
(145)
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and

D̄ ⇡
h

E{g(xi)|✓K}
(146)

Suppose µ = 1 and it is desired to have T̄ = 106. If we use the optimal bias
� = µ/2 then we have

106 =
�eh

�1/2
(147)

or h = 13.1. The corresponding

D̄ ⇡
h

E{g(xi)|✓K}
=

13.1

1/3
= 27 (148)

Not so bad.
But suppose we set � = µ/4, a too-small bias that presumably comes

from underestimating the size of the change. Then we have t(✓H) = 1/2 and
hence (121) gives us

106 =
�eh/2

(1/2)(�1/4)
(149)

or h = 23.5, and thence (122) yields

D̄ ⇡
h

E{g(xi)|✓K}
=

23.5

0.75
= 31 (150)

3.4 The Local Case

Without loss of generality consider we have

H : xi = ⌫i � ✓

K : xi = ⌫i + ✓ (151)

where ⌫i is iid with pdf f(·) and in which the update g(xi) such that

Z
g(x)f(x)dx = 0 (152)

is used in the Page procedure. Recall that we have

⌘(✓) = t(✓)E{g(xi)|✓} (153)

in which
E{et(✓)g(x)} = 1 (154)
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Let us use the Taylor strategy:

⌘(✓) ⇡ ⌘(0) + ✓⌘̇(0) +
1

2
✓2⌘̈(0) (155)

Now
⌘(0) = t(✓)E{g(xi)|✓}|✓=0 = 0 (156)

by assumption about g(x); and it can also be shown that t(0) = 0; so ⌘(0)
is especially small.

Continuing, we have (let us take H for concreteness)

⌘̇(0) = ṫ(✓)
Z

f(x� ✓)g(x)dx � t(✓)
Z

˙f(x� ✓)g(x)dx

����
✓=0

(157)

= (ṫ(0)⇥ 0) +
✓
0⇥

Z
˙f(x)g(x)dx

◆
(158)

= 0 (159)

Hence what remains is

⌘̈(0) = ẗ(0)
Z

f(x)g(x)dx � ṫ(0)
Z

ḟ(x)g(x)dxt(✓)

� ṫ(0)
Z

ḟ(x)g(x)dx + t(0)
Z

f̈(x)g(x)dx (160)

= �2ṫ(0)
Z

ḟ(x)g(x)dx (161)

and clearly we need ṫ(✓).
We write

1 =
Z

et(✓)g(x)f(x+ ✓)dx (162)

and di↵erentiate to get

0 = ṫ(✓)
Z

et(✓)g(x)g(x)f(x+ ✓)dx +
Z

et(✓)g(x)ḟ(x+ ✓)dx (163)

= ṫ(0)
Z

g(x)f(x)dx +
Z

ḟ(x)dx (164)

which is actually telling us that 0 = 0 – true but not especially useful. So
let us bravely di↵erentiate again:

0 = ẗ(0)
Z

et(0)g(x)g(x)f(x)dx + ṫ(0)2
Z

et(0)g(x)g(x)2f(x)dx

+ ṫ(0)
Z

et(0)g(x)g(x)ḟ(x)dx + ṫ(0)
Z

et(0)g(x)g(x)ḟ(x)dx

+
Z

et(0)g(x)f̈(x)dx (165)

= ṫ(0)2
Z

g(x)2f(x)dx + 2ṫ(0)
Z

g(x)ḟ(x)dx (166)
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or

ṫ(0) =
�2
R
g(x)ḟ(x)dxR

g(x)2f(x)dx
(167)

Now we get

⌘ ⇡
1

2
✓2⌘̈(0) (168)

=
1

2
✓2(�2ṫ(0)

Z
ḟ(x)g(x)dx) (169)

=
1

2
✓2(�2

�2
R
g(x)ḟ(x)dxR

g(x)2f(x)dx

Z
ḟ(x)g(x)dx (170)

= 2✓2

⇣R
g(x)ḟ(x)dx

⌘2

R
g(x)2f(x)dx

(171)

= 2E(g, f)2 (172)

which basically closes the circle: once again, we see e�cacy.

3.5 The Shiryaev Approach

This amounts to the Bayesian version of the Page procedure. That is, we
assume an underlying binary random process {✓i} such that ✓i 2 {✓H , ✓K}

and

Pr(✓i|✓i�1) =

 
1� ⇢ ⇢
0 1

!

(173)

meaning that the hypothesis process is a non-recurrent Markov chain: once
the change happens, it never switches back. Clearly the change process is
geometrically distributed, with expected number of samples before a change
1/⇢.

It is easy to derive a su�cient statistic

Pi = Pr(✓i = ✓K |{xj}
i

j=1) (174)

= c
h
Pr(✓i = ✓K |✓i�1 = ✓K)Pr(✓i�1 = ✓K |{xj}

i�1
j=1)f(xi|✓K) (175)

+Pr(✓i = ✓K |✓i�1 = ✓H)Pr(✓i�1 = ✓H |{xj}
i�1
j=1)f(xi|✓K)

i

= c [Pi�1f(xi|✓K) + ⇢(1� Pi�1)f(xi|✓K)] (176)

= c [Pi�1 + ⇢(1� Pi�1)] f(xi|✓K) (177)

and examination of the sequence {Pi} with appropriate threshold to declare
a “detection” makes sense.
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Some people prefer a likelihood ratio formulation. It is easy to show
directly, as with (177), that we can write

1� Pi = Pr(✓i = ✓H |{xj}
i

j=1) (178)

= c
h
Pr(✓i = ✓H |✓i�1 = ✓K)Pr(✓i�1 = ✓K |{xj}

i�1
j=1)f(xi|✓H)(179)

+Pr(✓i = ✓H |✓i�1 = ✓H)Pr(✓i�1 = ✓H |{xj}
i�1
j=1)f(xi|✓H)

i

= c(1� Pi�1)(1� ⇢)f(xi|✓H) (180)

This term c is a normalizing constant, and its value doesn’t much matter
unless (177) is being used directly. It can be calculated as

1/c ⌘ f({xj}
i

j=1) (181)

= [Pi�1 + ⇢(1� Pi�1)] f(xi|✓K)

+ (1� Pi�1)(1� ⇢)f(xi|✓K) (182)

So with

Ti(x) =
Pk

1� Pi

(183)

and

L(xi) =
f(xi|✓K)

f(xi|✓H)
(184)

we have

Ti(x) =
c [Pi�1 + ⇢(1� Pi�1)] f(xi|✓K)

c(1� Pi�1)(1� ⇢)f(xi|✓H)
(185)

=
✓
Ti�1(x) + ⇢

1� ⇢

◆
L(xi) (186)

A logarithm form is often convenient:

ti(x) ⌘ log(Ti(x)) (187)

= log(eti�1(x) + ⇢)� log(1� ⇢) + log(L(xi)) (188)

The Shiryaev-Roberts form of the test statistic assumes ⇢ is vanishingly
small and defines

Ri(x) =
Ti(x)

⇢
(189)

= (Ri�1(x) + 1)L(xi) (190)

Both (188) and (190) are CUSUM-like.
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Two important notes. First, initialization of (177)/(182), (188) or (190)
is a practical concern, but generally not very important unless an extreme
value is selected. Second, while all this analysis has assumed that the ob-
servations process {xi} is conditionally independent, there is, unlike for the
CUSUM’s optimality, no real need for that. Of course (177)/(182), (188) and
(190) all need to be modified if independence is not the case; but that is not
di�cult. The Shiryaev approach is especially valuable in non-independent
situations; for example, consider that {✓i} is the target-existence variable for
possible track deletion, but the observations process {xi} is the detection
process of the target, and {Pd(i)} is itself a Markov process if the target
undergoes periods of low-detectability.
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1 The Signal

The usual time-domain model for radar (and to a more relaxed extent, sonar)
is that a signal

s(t) = <

n
Acp(t)e

j2⇡fct
o

(1)

is transmitted, in which p(t) is some canonical pulse shape and the phase
and time references are for convenience assumed to be zero. For example,
we could have

p(t) = u(t)� u(t� T ) (2)

as the baseband pulse, in which case the transmitted signal is just

s(t) =

(
Ac cos(2⇡fct) 0  t < T

0 else
(3)

Alternatively we could have

p(t) = [u(t)� u(t� T )]ej2⇡(�f�t+f�t
2
/T )/2 (4)

in which case

s(t) =

(
Ac cos(2⇡(fct+ (�f�t+ f�t

2
/T )/2)) 0  t < T

0 else
(5)

in which case the transmitted pulse is an up-chirp (or LFM). To see this,
note that the instantaneous frequency of a sinusoidal signal

y(t) = A cos(�(t)) (6)

is agreed to be

f(t) =
1

2⇡

d�(t)

dt
(7)

which in the case of (5) is

f(t) = fc � f�/2 + f�t/T (8)

1



over the range 0  t < T : that is, a linear function from �f�/2 to f�/2.
Other signals of interest include coded pulses, “noise radar” pulses and mul-
tiple pulses of all such types.

Let us briefly consider the e↵ect of the relative position of transmitter
and target.

Delay. If the target is located at a distance d from the transmitter, the
received signal (absent noise) is s(t � 2d/c), in which c is the speed
of propagation in the medium. Examples include a rough order of
magnitude c ⇡ 1500m/s for sound in water (sonar), c ⇡ 300m/s

for sound in air (acoustics) and c ⇡ 3 ⇥ 108m/s for electromagnetic
radiation (radar). The factor of 2 is due to the round trip, assuming
colocated1 transmitter and receiver.

Power and Energy. In a situation of spherical spreading (as generally the
case with radar) the assumption is that all spherical shells surround-
ing the transmitter, contain the same power. This would mean that
the “area” by which a given target collects transmitted energy owns a
proportion of that shell that varies as 1/d2. Hence, since the target,
when it re-radiates this power back to the (colocated) receiver is sub-
ject to the same law. The result is that power is proportional to 1/d4

in radar. Whether this applies to sonar or not depends on target range
and water column depth (and many other things too); but it is often
assumed that the range is much larger than depth and hence power
spreading is “planar.” As such, it is common to assume an aggregate
1/d2 law in sonar – seemingly more favorable than radar. Energy is
of course power times time; so the energy collected is proportional to
pulse-length. That is, for radar (at least) SNR / T/d

4; and for sonar
SNR / T/d

2 (usually).

Coded pulses were mentioned earlier, and of special interest are the Barker
coded pulses for which

p(t) =
N�1X

n=0

�nq(t� k⌧) (9)

and in which q(t) is nominally a square pulse of “chip” length ⌧ but can be
otherwise. The sequence {�n} 2 {�1, 1} is ideally chosen such that

1

N

�����
X

n

�n�n+m

����� 
1

N
(10)

1
Bistatic operation is actually often quite favorable, especially for reasons of covertness

in which the transmitted may be an expendable “dumb” device but the receiver a high-

value asset.
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unless m = 0 (in which case the sum is unity). This means that such
(Barker) pulses have autocorrelation sidelobes as small as possible, given
their structure. There are only four such sequences known. The cases N = 2
& N = 3 (respectively {+1,�1} and {+1,+1,�1}) are largely trivial. The
interesting cases2 are N = 7

�n = {+1,+1,+1,�1,�1,+1,�1} (11)

and N = 11

�n = {+1,+1,+1,�1,�1,�1,+1,�1,�1,+1,�1} (12)

The Barker codes can be compounded: that is, the pulses q(t) can themselves
be Barker-coded with correspondingly shorter chip lengths.

The fundamental pulse p(t) can also be windowed (or “shaded” or “ta-
pered”) to reduce sidelobes. Whereas for digital signal processing filter de-
signs the window function in the time domain is measured in the frequency-
domain – sharp transition band and low sidelobes – here good performance
is evaluated in terms of the ambiguity function, which is discussed shortly
but is essentially the signal convolved with its time-reversed version. A good
ambiguity function would have low sidelobes and sharp transition band; but
it would also have a narrow “passband” (for resolution) and little variation
around the peak up to the transition (little SNR loss). Many systems use
Taylow weighting for this.

2 Detection

2.1 The Nonfluctuating Case

In the absence of distortion – and hence this applies more to radar than to
sonar, where distortion is endemic – the observed signal3 is

H : x(t) = ⌫(t) (13)

K : x(t) = Ap(t) cos(2⇡fc(t� t0 � t
�)) + ⌫(t) (14)

in which ⌫(t) is additive white Gaussian noise with power spectral density
N0/2. In (14), t0 is the reference time – the time corresponding to the

2
To see why things are interesting look at the matched-filter response for

{+1,�1,+1,�1}, which is seemingly good.
3
This is sometimes called the nonfluctuating case: fluctuations can be cause by propa-

gation disturbances, but more likely come from a target that contains multiple reflectors:

since their geometry can change rapidly from constructive to destructive interference, the

target is said to fluctuate.
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location of the target that is being tested for – and t
� is small o↵set from

that. To be concrete, suppose we have fc = 3GHz, T = 1µs and we test
for targets every µs, which corresponds to testing the hypothesis that the
target is at (say) 1000m, 1150m, 1300m, etc. But suppose the true target is
at a distance 1156m: this would indicate that the target is 6m mismatched
to the test at 1150m, and hence t

� = 2(6m)/(3⇥ 108m/s) = 0.04µs. Now,
for notational ease we set t0 = 0, and write

H : x(t) = ⌫(t) (15)

K : x(t) = Ap(t) cos(2⇡fct� 2⇡fct
�) + ⌫(t) (16)

We see that (in this nominal example) fct� = (3⇥109Hz)(4⇥10�8
s) = 120

– that is, even this small 6m o↵set from the 1150m test point corresponds
to 120 periods of the carrier waveform. It is for this reason that we write

H : x(t) = ⌫(t) (17)

K : x(t) = Ap(t) cos(2⇡fct+  ) + ⌫(t) (18)

in which  is a phase assumed uniformly distributed on (0, 2⇡), since as
indicated with the previous notional example, the wavelength of a radar
waveform is � = c/fc. If fc = 3GHz we have � = 10cm, and there is no
reasonable way to match a target’s location with this accuracy.

Without loss of generality4 we consider the “baseband” version of this
observations process:

x
c(t) = LPF {x(t)2 cos(2⇡fct)} (19)

x
s(t) = LPF {x(t)2 sin(2⇡fct)} (20)

in which it is assumed that p(t) has a bandwidth B that corresponds to the
cuto↵ frequency of the low-pass filter. We could reconstruct

x(t) = x
c(t) cos(2⇡fct) � x

s(t) sin(2⇡fct) (21)

and we note that these xc(t) and xs(t) are know as the in-phase and quadra-
ture (“I & Q”) channels – and radar systems really do use these5 in their
hardware. We have under K that we can write

x
c(t) = Ap(t) cos( ) + ⌫

c(t) (22)

x
s(t) = Ap(t) sin( ) + ⌫

s(t) (23)

4
The statistical modeling theory is discussed in Communication Theory classes. It is

standard but too lengthy to repeat in an inline discussion. However, the relevant notes

are provided separately.
5
That is, if you looked at the electronics these signals would really actually exist and

pass the “oscilloscope” test: you could touch a probe to a wire and see them on the scope.
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where ⌫c(t) and ⌫s(t) are independent with flat power-spectral densities N0

on (�B,B), and zero elsewhere.
We could (and probably should) use the Karhunen-Loève formulation for

this, but it is clearer to assume that the signals are ideally lowpass-filtered
sampled at the Nyquist frequency such that the (filtered white) noise samples
are independent. That is, we have

x
c

i = Api cos( ) + ⌫
c

i (24)

x
s

i = Api sin( ) + ⌫
s

i (25)

in which  remains uniform on (0, 2⇡) and the ⌫’s are all iid Gaussian with
means zero and variances �2 = N0fs in which fs is the (Nyquist) sampling
rate. We have

f(xc, xs|K)

=
1

2⇡

Z 2⇡

0

✓
1

2⇡�2

◆
n

e
� 1

2�2

P
n

i=1
[(xc

i
�Api cos( ))2+(xs

i
�Api sin( ))2]

d (26)

=
✓

1

2⇡�2

◆
n

e
� 1

2�2

P
n

i=1
[(xc

i
)2+(xs

i
)2+A

2
p
2
i
]

⇥
1

2⇡

Z 2⇡

0
e

1
�2 (
P

n

i=1
[xc

i
Api] cos( )+

P
n

i=1
[xs

i
Api] sin( ))

d (27)

Via the standard change of variables we define

r cos(✓) ⌘

nX

i=1

[xcipi] ( ⌘ u) (28)

r sin(✓) ⌘

nX

i=1

[xsipi] ( ⌘ v) (29)

hence (27) becomes

f(xc, xs|K) =
✓

1

2⇡�2

◆
n

e
� 1

2�2

P
n

i=1
[(xc

i
)2+(xs

i
)2+A

2
p
2
i
]

⇥
1

2⇡

Z 2⇡

0
e

1
�2 (Ar cos(✓) cos( )+Ar sin(✓) sin( ))

d (30)

=
✓

1

2⇡�2

◆
n

e
� 1

2�2

P
n

i=1
[(xc

i
)2+(xs

i
)2+A

2
p
2
i
]

⇥
1

2⇡

Z 2⇡

0
e

1
�2Ar cos( �✓)

d (31)

=
✓

1

2⇡�2

◆
n

e
� 1

2�2

P
n

i=1
[(xc

i
)2+(xs

i
)2+A

2
p
2
i
]
I0(Ar) (32)
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in which I0(·) denotes a Bessel function. Since we also have

f(xc, xs|H) =
✓

1

2⇡�2

◆
n

e
� 1

2�2

P
n

i=1
[(xc

i
)2+(xs

i
)2] (33)

we have, by forming the likelihood ratio, dropping constants and realizing
the monotonicity of I0(·), that a su�cient statistic for testing is

�(xc, xs) = r
2

⌘ u
2 + v

2 (34)

=

 
nX

i=1

x
c

ipi

!2

+

 
nX

i=1

x
s

ipi

!2

(35)

/

�����

Z
T

0
x̃(t)p(t)⇤dt

�����

2

(36)

=

 Z
T

0
x(t)p(t) cos(2⇡fct)dt

!2

+

 Z
T

0
x(t)p(t) sin(2⇡fct)dt

!2

(37)

in which (36) uses the complex baseband representation of the signal

x̃(t) = x
c(t) + jx

s(t) (38)

as discussed in the separate notes on narrowband signals and noise.
Under H, u and v are independent and Gaussian, with means zero and

total variances

�
2 =

N0

2

Z
T

0
p(t)2dt (39)

We thus have

↵ = Pr(T > ⌧�
2
|H) (40)

=
Z

u2+v2>⌧�2

1

2⇡�2
e
� 1

2�2 [u
2+v

2]
dudv (41)

=
Z 1
p
⌧�

Z 2⇡

0

r

2⇡�2
e
� r

2

2�2 drd✓ (42)

= e
�⌧/2 (43)

meaning that the test statistic has an exponential density under H. In (42)
we used (28), (29) and took the Jacobian.

Under K, u and v are independent and Gaussian, with total variance �2

as in (39) and means

E{u|K} =
Z

T

0
Ap(t) cos(2⇡fct+  )p(t) cos(2⇡fct)dt (44)
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=
A

2

Z
T

0
p(t)2dt cos( ) (45)

⌘ ⇢ cos( ) (46)

E{v|K} =
Z

T

0
Ap(t) cos(2⇡fct+  )p(t) sin(2⇡fct)dt (47)

=
A

2

Z
T

0
p(t)2dt sin( ) (48)

⌘ ⇢ sin( ) (49)

in which

⇢ ⌘
A

2

Z
T

0
p(t)2dt (50)

We get

� = Pr(T > ⌧�
2
|K) (51)

=
Z

T>⌧�2

1

⇡�2
e
� 1

�2 [(u�⇢ cos( ))2+(v�⇢ sin( ))2]
dudv (52)

=
Z 1
p
⌧�

Z
⇡

0

r

⇡�2
e
� 1

2�2 [(r cos(✓)�⇢ cos( ))2+(r sin(✓)�⇢ sin( ))2]
drd✓ (53)

=
Z 1
p
⌧�

2r

�2
e
� r

2+⇢
2

�2 I0(r⇢/�
2)dr (54)

=
Z 1
p
⌧

Re
�R

2+(⇢/�)2

2 I0(R⇢/�)dR (55)

⌘ Q

✓
⇢

�
,
p
⌧

◆
(56)

To get to (55) we used R = r/�, and the integrand in (55) is called the
Ricean pdf. The function in (56) is called Marcum’s Q-function and it is
tabulated if not especially pretty. The SNR term in (56) is

SNR ⌘ (⇢/�)2 (57)

=
A

2
/4
⇣R

T

0 p(t)2dt
⌘2

N0/2
R
T

0 p(t)2dt
(58)

=
A

2

2N0

Z
T

0
p(t)2dt (59)

=
E

N0
(60)

in which E is the radar return energy, the integral of the square of (3).
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2.2 The Swerling I Model

Equation (16) represents a “point” target: a single reflection. This may be
appropriate either for a waveform with very low resolution or a target that
is a small metal ball. That is, it is seldom realistic. A more realistic model
has it that (16) is replaced by

H : x(t) = ⌫(t) (61)

K : x(t) =
RX

r=1

Ar cos(2⇡fct� 2⇡fct
�
r ) + ⌫(t) (62)

in which the target is composed6 of R “reflectors” with strengths {Ar} and
range-o↵sets {ct�r /2}. We thus write (23) as

x
c(t) = p(t)

RX

r=1

Ar cos( r) + ⌫
c(t) (63)

x
s(t) = p(t)

RX

r=1

Ar sin( r) + ⌫
s(t) (64)

in which it is assumed that t
�
r ⌧ T so that the impact on p(t) of ignoring

it is small; and all { r} are independent. It is a small step to apply the
central limit theorem to write (64) as

x
c(t) = A

c
p(t) + ⌫

c(t) (65)

x
s(t) = A

s
p(t) + ⌫

s(t) (66)

in which Ac and As are zero-mean, independent and Gaussian.
There are many ways to treat this, and the easiest is to note that the

analysis in the previous section, in which the target had a constant and
known strength A, ended up with a structure that did not depend on A.
That is, the sum of the squares of the I & Q matched filters (37) is UMP
(uniformly most powerful).

Another approach, which is instructive, is to write vectors x
c & x

s to
represent the samples of the I & Q channels, and the vector p containing
the samples of p(t), we see that we have a standard Gaussian problem

H : f(xc, xs|H) =
1

|2⇡RH|
e
� 1

2 ((x
c)TR

�1
H

(xc)+(xs)TR
�1
H

(xs)) (67)

K : f(xc, xs|K) =
1

|2⇡RK|
e
� 1

2 ((x
c)TR

�1
K

(xc)+(xs)TR
�1
K

(xs)) (68)

6
These might be nose, wingtip, engines . . . in addition to the specular point, generally

any discontinuity and broadside-aspect flat bit reflects energy.
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in which

RH ⌘ �
2I (69)

RK ⌘ �
2I + �

2
App

T (70)

and

�
2

⌘ E{⌫
2
c } = E{⌫

2
s} (71)

�
2
A ⌘ E{A

2
c} = E{A

2
s} (72)

in which Nyquist-rate sampling is assumed. We thus have the log-likelihood
ratio

log(L(xc, xs)) =
1

2
(xc)T (R�1

H
�R�1

K
)(xc) +

1

2
(xs)T (R�1

H
�R�1

K
)(xs)

+ log(|RH |) � log(|RK |) (73)

Via the Woodbury formula we have

R�1
K

= �
�2I �

�
�4

pp
T

�
�2
A

+ ��2pT p
(74)

= R�1
H

�
�
�4

�
�2
A

+ ��2pT p
pp

T (75)

meaning that a su�cient statistic for detection is

�(xc, xs) =
⇣
p
T (xc)

⌘2
+
⇣
p
T (xs)

⌘2
(76)

meaning that the optimal test is the same as in (37): the sum of the squares
of the I & Q channel matched filters – the same result as we would get with
the UMP insight.

As for performance, note that with u and v as defined in (34), we have
the same H analysis as (40) leading to (43). Under K we have – much
simpler than the nonfluctuating case – we also have u and v independent and
zero-mean Gaussian. That is, the statistical situation under the Swerling
I target-present hypothesis K is the same as under H, the only di↵erence
being that the variance is not �2 but �2+E, in which E is the target energy7

returned to the receiver. We get

↵ = Pr(T > ⌧�
2
|H) (77)

= e
�⌧/2 (78)

7
Note that this is the average target energy, since the amount of energy returned is a

random variable.
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and

� = Pr(T > ⌧�
2
|K) (79)

= exp

 
��

2
⌧

2(�2 + E)

!

(80)

= ↵
1

1+SNR (81)

in which the SNR term is as in (60). We often write

f(�|H) =
1

µ
e
��/µ

u(�) (82)

f(�|K) =
1

µ(1 + SNR)
e
��/µ(1+SNR)

u(�) (83)

as a short form for the Swerling I model.

2.3 The Swerling III Model

The Swerling III model is a modification on the Swerling I idea, in that it is
assumed that in (62) one reflector – perhaps the specular – is too large to
be lumped in with the others. The upshot is that (66) becomes

x
c(t) = (A cos( ) +A

c)p(t) + ⌫
c(t) (84)

x
s(t) = (A sin( ) +A

s)p(t) + ⌫
s(t) (85)

in which Ac and As are zero-mean, independent and Gaussian,  is uniform
on (0, 2⇡) and A denotes the strength of the dominant reflector.

Via the UMP insight the test base on the magnitude-square matched
filter (37) remains optimal. And since the second and third terms in (85) can
be combined, the probability of detection is similar to the non-fluctuating
case

� =
Z 1
p
⌧�

r

�2 + �
2
t

e
� r

2+⇢
2

�2+�
2
t I0(r⇢/(�

2 + �
2
t ))dr (86)

in which ⇢ is as before and �2t is the twice the variance of Ac and A
s. We

approximate
I0(z) ⇡ 1 + z

2
/4 (87)

and get

� =
Z 1
p
⌧�

r

�2 + �
2
t

e
� r

2+⇢
2

�2+�
2
t

"

1 +
1

4

✓
r⇢

�2 + �
2
t

◆2
#

dr (88)

⇡

Z 1
p
⌧�

r
3
⇢
2

4(�2 + �
2
t
)3
e
� r

2+⇢
2

�2+�
2
t dr (89)
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where the second term is assumed larger than the first8. From (89) we can
change variables and write

f(�|H) =
1

µ
e
��/µ

u(�) (90)

f(�|K) =
4�

(µ(1 + SNR))2
e
�2�/µ(1+SNR) (91)

for Swerling III. Most targets, lore has it, are covered by Swerling I or
Swerling III on a single-pulse level. Swerling I is more commonly assumed.

2.4 Swerling II and Swerling IV

Many radar systems operate using multiple pulses, each of length T but
separated in time by and inter-pulse interval tp. The question arises: are
the pulses coherent (meaning that the “random” phase for each one  is
the same) or independent? Radar engineers invoke the coherence time or
decorrelation time to discuss this.

Swerling II and Swerling IV are exactly like Swerling I and Swerling III,
respectively; except that for Swerling I the pulses are perfectly correlated
and for Swerling II they are perfectly independent, with the corresponding
relationship between Swerling III and Swerling IV. Clearly for Swerling I
and Swerling III the multiple pulses might as well be thought of as a single
pulse.

For Swerling II noncoherent integration – that is, summing the �’s from
the pulses – is the optimal test statistic. The optimal test in the Swerling
IV case is slightly more complicated, but generally noncoherent integration
or simple sign detection9 is used.

In many (or even most) radar situations a target can be considered non-
fluctuating over the time period of the pulse-train. Consider a radar with a
frequency of 3GHz, a pulse-length of 1µs, a pulse-repetition interval (PRI)
or 20µs and 10 pulses: the overall dwell time is approximately 200µs. If
the target aspect changes little during this time (as would be expected) the
fluctuation would be minor. However, it should be noted that for a Swerling
I target (and to a lesser extent a Swerling III target) the lack of fluctuation
can actually be a concern, since the target can be in “deep fade” of the sort
that communications engineers fear. Fortunately, by varying the center fre-
quency of the pulses in the pulse train an artificially noncoherent target can

8
This seems to conflict with the Taylor approach. There is admittedly little justification

in the Swerling III model.
9
This means test each pulse separately and count the number of successes.
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be manufactured: non-coherent pulse integration (or even decision fusion)
should be used for detection.

distance

time

transmitter

receiver

message
transmit

start

message
transmit
end

message
receive

start

message
receive
end

T

vtT

d

ts te

xs

xe

slope vr

slope vt

slope c

Figure 1: Figure used to explain derivation of Doppler shift for acoustic
sources. The horizontal axis is time, the vertical axis is separation between
the transmitter and receiver. The transmitter moves at velocity vt and
the receiver vr; both can be negative, but neither larger than the speed of
propagation c. The message duration is T . The goal of the analysis is to
compare the apparent pulse time ⌧e � ⌧s as observed by the receiver to T :
the ratio is the time dilation factor, and we will soon calculate it to be (108).

3 Doppler Shift

3.1 Narrowband and Slow-Speed Doppler Shift.

This analysis is approximate; we will improve it later. Assume that the
relative range-rate of target and transmitter is v; that is, the distance to
the target is d(t) = d0 + vt, where the base distance is d0. The signal that
arrives at the target is

x(t) = s(t� 2d(t)/c) (92)

= s(t� 2(d0 + vt)/c) (93)

= s(t(1� 2v/c)� d0/c) (94)
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which implies that the signal is “stretched” by this time-dilation factor ↵ =
(1� 2v/c). For radar it is reasonable10 to assume that this is small relative
to the pulse bandwidth: p(t) ⇡ p(↵t). However, since generally the carrier
frequency fc is very high we cannot ignore its e↵ect on that; we get,

x(t) = <

n
Ap(↵t)ej2⇡fc↵t

o
(95)

⇡ <

n
Ap(t)ej2⇡fctej2⇡fdt

o
(96)

(we are not interested in noise here) in which

fd =
✓
�2v

c

◆
fc (97)

is the Doppler shift frequency; c ⇡ 3 ⇥ 108m/s is the speed of light and
fc is the radar’s carrier frequency. Note that v is the range-rate of the
target to the radar: if the target is “closing” (v < 0) then the frequency
shift is positive. If v = 60m/s and fc = 3GHz (a typical S-band11), then
fd = 1200Hz.

3.2 General Acoustic Doppler Shift

The primary di↵erence between acoustic and electromagnetic Doppler shifts
is relativity. Special relativity implies that for electromagnetic the speed of
propagation is the same for all frames of reference, transmitter and receiver
both. The true Doppler uses the Lorentz contraction factor to calculate the
time compression/dilation at the receiver, and is complicated; fortunately
the answer turns out to be the same as what is given below, and well ap-
proximate by what was just shown, above.

For acoustic sources we do not always have v ⌧ c, since (for example) in
air c ⇡ 300m/s, and such speeds are easily within reach. But we also have
that the speed of propagation is relative to the medium (assumed at rest),
and since both transmitter and receiver can be moving, this can present
added di�culties. We will begin a development, and refer to figure 1. The
goal of the analysis is to calculate ⌧e � ⌧s, since the ratio of that to T is the
time dilation factor ↵.

We have the following equations.

xs = d+ vr⌧s (98)

xs = c⌧s (99)

10
A (very) fast target might be 1.5km/s; in that case we have ↵ = 1± 0.00001.

11
L-band is 1-2GHz, S-band 2-4GHz, C-band 4-8 GHz . . . there are many bands beyond.
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xe = xs + vr(⌧e � ⌧s) (100)

xe = vtT + c(⌧e � T ) (101)

Combining (98) and (99) we get

⌧s =
d

c� vr
(102)

xs =
cd

c� vr
(103)

hence equating the right sides of (100) and (101) we get

xs + vr(⌧e � ⌧s) = vtT + c(⌧e � T ) (104)
cd

c� vr
+ vr

✓
⌧e �

d

c� vr

◆
= vtT + c(⌧e � T ) (105)

or

⌧e =
d� (vt � c)T

c� vr
(106)

Combining (102) and (106) we get

⌧e � ⌧s =
c� vt

c� vr
T (107)

or

↵ =
1� vt/c

1� vr/c
(108)

where vt is positive toward the receiver and vr is positive away from the
transmitter, as indicated in figure 1. Note that for |vr| ⌧ c we use the
Taylor approximation to get

↵ ⇡ (1� vt/c)(1 + vr/c) (109)

⇡ 1�
vt � vr

c
(110)

for the (approximate) one-way acoustic Doppler shift.
For the two-way Doppler shift the roles of receiver and transmitter get re-

versed, for the path from target (now a “transmitter” of its reflected energy)
back to the radar receiver (assumed colocated with the original “transmit-
ter”). Consequently the two-way dilation factor is

↵ =
✓
1� vt/c

1� vr/c

◆✓
1 + vr/c

1 + vt/c

◆
(111)
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Again using the first-order Taylor expansion we approximate

↵ ⇡ (1� vt/c)(1 + vr/c)(1 + vr/c)(1� vt/c) (112)

⇡ 1� 2
vt � vr

c
(113)

for the (approximate) two-way acoustic Doppler shift. It should be stressed
again that (110) and (113) are approximate relations, valid only when |vt| ⌧

c and vt ⌧ c – more generally (108) holds.
As a final note, it should be observed that the analysis here assumes

that during the time of interest (essentially, T + 2d/c) the transmitted and
receiver can be modeled as having a fixed scalar velocity, as in figure 1. In
cases that the full vectors vr and vt are not aligned with the vector from
transmitter to receiver – and T is large – this may not be true. A visceral
example of this is when an ambulance siren is heard passing near: its pitch
changes smoothly12 from elevated in frequency to depressed, as it passes.

tpT

n=0 n=1 n=2 n=3 n=4=N=1

Figure 2: Unnecessary embellishment of what a radar pulse composed of
multiple pulses might look like.

3.3 Multiple Pulses

Let us consider the approximate Doppler shift example given previously:
for v = 60m/s and fc = 3GHz we had fd = 1200Hz. Since the Doppler
resolution is generally thought to be approximately the reciprocal of the
pulse length, a 10µs pulse (actually rather long for radar) could not reliably
observe such a shift, since 1/T = 100kHz.

12
In the case that vt is collinear with the transmitter/receiver vector the pitch switches

abruptly. However, the time of switch corresponds to the moment that the receiver is run

over by the ambulance, hence this situation is not, strictly speaking, observable.
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Now, let us consider the (36) form of (37)

� =

����
Z

x̃(t)p⇤(t)dt

����
2

(114)

For a multiple-pulse system (with coherence assumed13), we have

s(t) = <

(
N�1X

n=0

Ap(t� ntp)e
j2⇡fct

)

(115)

in which p(t) represents an individual pulse, tp is the interval separating
pulse beginnings, and presumably tp � T in which T is the pulse length –
see figure 2. We therefore adapt (36) to this new baseband pulse

N�1X

n=0

Ap(t� ntp) (116)

and baseband return

N�1X

n=0

Bp(t� ntp)e
j2⇡fdt + ⌫̃(t) (117)

and write

� =

�����

Z (N�1)tp+T

0

 
N�1X

n=0

Bp(t� ntp)e
j2⇡fdt + ⌫(t)

!

⇥

 
N�1X

n=0

p
⇤(t� ntp)

!

dt

�����

2

(118)

=

�����

N�1X

n=0

Z
ntp+T

ntp

⇣
Bp(t� ntp)e

j2⇡fdt + ⌫(t)
⌘

⇥ (p⇤(t� ntp)) dt|
2 (119)

=

�����

N�1X

n=0

Z
T

0
B|p(⌧)|2ej2⇡fd(⌧+ntp)d⌧

+
Z

T

0
p
⇤(⌧)⌫(⌧ + ntp)d⌧

�����

2

(120)

=

�����

N�1X

n=0

 Z
T

0
B|p(⌧)|2ej2⇡fd⌧d⌧

!

e
j2⇡(fdtp)n

�����

2

13
It should be obvious that multi-pulse Doppler is possible with Swerling I & III models;

and completely impossible for Swerling II & IV.
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+
Z

T

0
p
⇤(⌧)⌫(⌧ + ntp)d⌧

�����

2

(121)

=

�����

N�1X

n=0

ye
j2⇡(fdtp)n + ⌫n

�����

2

(122)

in which the definitions of y and ⌫n are obvious. The point is that the
Doppler frequency fd can be inferred from the sequence of single-pulse
complex-baseband matched filters via a simple frequency estimation rou-
tine. If we return to our example at the beginning of this section, we have
fd = 1200Hz. Let us select tp = 100µs; then from (122) we have a digital
frequency ! = 2⇡fdtp = 2⇡(0.12). With (say) N = 20 pulses this is easilty
resolvable.
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Figure 3: An ambiguity function for the rectangular constant-frequency
(CF) pulse case. The time axis extends ±T . The frequency axis is in units
of 1/T .

4 The Ambiguity Function

We have from (36) the matched filter expression

� =

�����

Z
T

0
x̃
⇤(t)p(t)dt

�����

2

(123)
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for the matched filter output. This filter is “matched” to a return exactly
aligned in time with its sample, and it assumes no Doppler shift. Let us
ignore noise, but allow for mismatch, meaning that we have

x̃(t) = Ap(t� td)e
j2⇡fd(t�td) (124)

where the delay and Doppler are respectively td and fd.The response clearly
depends on the ambiguity function

A(td, fd)
2
⌘ 

�����

Z
T

0
p(t)p(t� td)

⇤
e
j2⇡fdtdt

�����

2

(125)

where the normalizer  scales the maximum value to unity and due to sym-
metry the sign of td does not matter. For a rectangular pulse we have

A(td, fd)
2 = 

�����

Z
T�|td|

0
e
j2⇡fdtdt

�����

2

(126)

A(td, fd) = |(T � |tp|)sinc(fd(T � |tp|))| (127)

This is plotted in figure 3. Note that for this (rectangular and constant-
frequency) pulse, with td = 0 we have the first Doppler “null” at |fd| = t/T

– and greater than than if td 6= 0. This informs our earlier insight that
Doppler sensitivity is inversely proportional to the pulse-length.

The ambiguity function implies the response of a matched filter that
is mismatched to the truth. That is, it provides insight as to the amount
to signal energy that is lost by testing for a target at (t0, f0) when the
actual target is at (t1, f1). How densely must matched filters be placed in
delay-Doppler space? Clearly too many matched filters wastes computation;
but perhaps worse, it can produce a centroiding issue that a given point
target actually appear in more than one (or even many) apparent “hits” –
additional logic must be applied to provide a single return with reportable
quality. On the other hand, if there are too few matched filters such that
that target is missed, that is even worse. Figure 4 shows how the ambiguity
function provides guidance: samples should taken densely enough that an
acceptable “scalloping loss” (a rule of thumb might be that the ambiguity
function be no smaller than 50%) is preserved.

The ambiguity function has some simple properties that are useful to
recall

Unimodality. The unique maximum value of the ambiguity function is
found at (td, fd) = (0, 0). This is simple to prove via the Schwarz
Inequality.
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Doppler

delay

Figure 4: A notional figure indicating how the ambiguity function can sug-
gest matched-filter samples corresponding to resolution cells.

AF for CF pulse

AF for LFM pulse

1/T

T

kT

approximately 1/kT

Figure 5: A notional figure indicating the ambiguity function for a rectan-
gular chirp (LFM) waveform.
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Unit Volume. Via Parseval it can be shown that we have
Z Z

A(td, fd)
2
dtddfd = 1 (128)

This has the nice implication that attempting to “push down” a side-
lobe by clever waveform design necessarily makes another sidelobe pop
up somewhere else.

Chirp. Suppose the baseband pulse p(t) has ambiguity function Ap(td, fd).

Then the chirped pulse q(t) = p(t)ej⇡kt
2
has ambiguity function

Aq(td, fd) =

�����

Z
T

0
q(t)q(t� td)

⇤
e
j2⇡fdtdt

����� (129)

=

�����

Z
T

0
p(t)ej⇡kt

2
p(t� td)

⇤
e
�j⇡k(t+td)2e

j2⇡fdtdt

�����(130)

=

�����e
�j⇡kt

2
d

Z
T

0
p(t)p(t� td)

⇤
e
j2⇡(fd�k)t

dt

����� (131)

=

�����

Z
T

0
p(t)p(t� td)

⇤
e
j2⇡(fd�ktd)tdt

����� (132)

= Ap(td, fd � ktd) (133)

The latter property is sketched in figure 5. The original CF pulse ambiguity
function is indicated by an ellipse, and the LFM by a tilted ellipse. Assuming
the slopes of the CF ellipse near the origin to be zero and of the LFM ellipse
to be k, the range resolution is easily seen to be approximately 1/kT . It turns
out that kT is also the bandwidth of the chirp, and the time resolution of
any waveform is generally thought to be well approximated by the reciprocal
of the bandwidth.

5 Monopulse Radar

The left part of figure 6 sketches a notional radar system. Let us insert some
typical numbers: the range of the target is 100km and the beam-width is
10mrad – the latter is about half a degree, which is not so bad although big
radars can do better. Simple geometry gives us that that angular accuracy
– the arc length of the beam – is 1000m. If we also insert that the radar
signal bandwidth is 300MHz, the (approximate!) range accuracy is of the
order of 1m. Clearly the cross-range uncertainty is not commensurate with
the down-range accuracy.
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radar 
face beams

Figure 6: Left: A notional radar without monopulse processing, figure from
Blair & Ogle. Right: Monopulse cartoon of the sort that we will consider.
Actually there would be four beams to get high resolution in both azimuth
and elevation.

Error 

Angle

Monopulse Ratio
(d/s)

Figure 7: Illustration of construction of the sum and di↵erence channels.
Note that close to the boresight the di↵erence channel is approximately
linear in the o↵set from boresight. Figure from Blair & Ogle.

The right part of figure 6 suggests the notion of monopulse radar. One
may think of this as each “beam” being comprised of two beams, slightly o↵-
set from one another. The usual model for monopulse returns, particularized
to one dimension, is

s = x + ⌫s (134)

d = ⌘x + ⌫d (135)

in which s is the sum channel observation, d is the di↵erence-channel ob-
servation, x is a complex Gaussian random variable with mean zero and
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variance �2s that corresponds to the “skin return” from the target, and ⌫d

and ⌫s are complex Gaussian noises each with mean zero and variance �2 –
all random quantities are independent. The scalar ⌘ 2 (�1, 1) is the elec-
tronic angle that corresponds to the ratio of the sum of the beam outputs
to the di↵erence; again, see figure 7 for what is meant. Note that a Swerling
I fluctuation model is here assumed, although it is not necessary.

As a notional example, let us assume the canonical beam pattern is a
cosine14, such that the left and right outputs15 are

yl = cos(�(✓ � ✓0))y (136)

yr = cos(�(✓ + ✓0))y (137)

in which y is the return from the target, ✓ is the actual o↵-boresight angle
of the target and ✓0 is the o↵-boresight steering angle of the two beams –
respectively to the left and to the right – and � determines the width of the
beam. Then we have

s = yl + yr (138)

= [cos(�(✓ � ✓0)) + cos(�(✓ + ✓0))] y (139)

= [cos(�✓) cos(�✓0) + sin(�✓) sin(�✓0)

+ cos(�✓) cos(�✓0)� sin(�✓) sin(�✓0)] y (140)

= 2 cos(�✓) cos(�✓0)y (141)

We similarly have

d = yl � yr (142)

= 2 sin(�✓) sin(2�✓0)y (143)

Now, consider that we form the monopulse ratio

⌘̂ ⌘ <

⇢
s
⇤
d

|s|2

�
(144)

⇡ tan(�✓0) tan(�✓) (145)

= ⌘(✓) (146)

⇡ [� tan(�✓0)] ✓ (147)

in which the first approximation is that the noises ⌫s and ⌫d can be neglected,
and the second is that the angle ✓ is small. As a practical note, the cosine-
beampattern analysis is just notional: a similar result would be obtained for

14
Assume that � is small enough that the first zero is beyond the beamwidth.

15
We here exemplify azimuth with left & right. An analysis for elevation using up and

down would be equivalent.
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any beampattern that has a reasonable roll-o↵16 away from center. As an
exercise, the reader is encouraged to examine the raised cosine or Gaussian
shape. In (146) the functional notation (that ⌘ is actually ⌘(✓)) is what
practical systems use: they know the sum and di↵erence beampatterns and
hence the mapping ⌘(✓): it would make little sense to ignore that, hence of
course they don’t.

The concept of a sum and di↵erence channel dates to older radar systems
in which there were actually four receiver “horns” located slightly o↵set from
the focus of the parabolic antenna. In fact, the original concept for radar
was to use a single beam but to examine the target from multiple dwells – to
the left, to the right, above and below – and to infer the fine-resolution angle
from the di↵erences in received energy. The monopulse system17 described
here is more modern and far more accurate. However, even more modern
systems use phased-array radar, in which beams are “steered” based on
hundreds of small antenna feeds (actually usually slots in an antenna face).
The one sum and two (azimuthal and elevation) di↵erence channels are
formed via digital signal processing, and often the two shapes are chosen via
Taylor and Bayliss shading, respectively. One might reasonably ask why do
this: why not simply infer the target’s angle directly from the hundreds of
antenna returns. The answer is that the monopulse ratio is close to optimal
for angular estimation, and is very fast; nonetheless some moderns radars
with good computational abilities do their direction-finding directly from
the array element data, using (for example) the MUSIC direction-finding
technique.

Let us return to (144) and find the statistics. Conditioned on s we see
that d is Gaussian with

E{d|s} =
⌘�

2
s

�2s + �2
s (148)

V{d|s} = ⌘
2
�
2
s + �

2
�

 
⌘�

2
s

�2s + �2

!2

(�2s + �
2) (149)

= �
2

 

1 +
⌘
2
�
2
s

�2s + �2

!

(150)

16
Monopulse radar is one situation in which the canonical “brick-wall” filter shape is

not a good idea. Actually a triangular beam would be nice in terms of simplicity, as the

relative strength on the channels is key to angular resolution.
17
The “original” system with the multiple dwells inferred fine target cross-range position

via di↵erences between several radar pulses. When the monopulse system was designed it

was so called because it did the same thing with one pulse. However, modern radars use

pulse trains to get Doppler – leading to the confusing monicker “multipulse monopulse”.
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This implies that given s,

⌘̂ =
1

|s|2
<{s

⇤
d} (151)

is Gaussian as well. Again conditioned on s the ratio s
⇤
d/|s|

2 is Gaussian
with

E

⇢
s
⇤
d

|s|2

���� s
�

=
⌘�

2
s

�2s + �2
(152)

V

⇢
s
⇤
d

|s|2

���� s
�

=
�
2

|s|2

 

1 +
⌘
2
�
2
s

�2s + �2

!

(153)

It is especially interesting that the conditioning is only on the magnitude-
square of the sum-channel return. Defining the sum-channel SNR and the
observed SNR as

S =
�
2
s

�2
(154)

So =
|s|

2

�2
(155)

we are left with

E { ⌘̂ | So} =
⌘S

S + 1
⇡ ⌘ (156)

V { ⌘̂ | So} =
1

So

 

1 +
⌘
2
S

S + 1

!

⇡
1 + ⌘

2

So

(157)

where the assumption is that the SNR is relatively large. That is, the
observed angular accuracy is inversely proportional to the observed SNR,
and this is reportable, for example, to a tracker that requires individualized
and time-varying measurement accuracy.

6 Constant False-Alarm Rate

6.1 CA-CFAR

We will inform this discussion by the Swerling I example, for which

f(�|H) =
1

µ
e
��/µ

u(�) (158)

f(�|K) =
1

µ(1 + S)
e
��/µ(1+S)

u(�) (159)
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cell
under
test

guard cells

leading windowlagging window

estimate µ

Figure 8: For CFAR operation the estimate of the local noise power is
taken from nearby resolution cells. It is often a good idea to exclude nearby
“guard band” cells, since they may contain target energy and hence bias the
noise-power estimate upwards resulting in target masking. In this figure it
is implied that the CFAR reference cells are in range only – while this is
convenient, it may be useful to use cells nearby in azimuth and / or elevation
and / or Doppler. Note that the reference windows should be local to the
test cell, since clutter conditions can change greatly, spatially.

in which � is the test-statistic (sum of squares of I & Q matched-filter
outputs), S is the SNR and µ is the noise power. In order to set the threshold
for an acceptable false-alarm rate we require knowledge of µ. The CFAR
idea is to estimate µ based on other matched filter outputs, as suggested in
figure 8.

The cell-averaging (CA-CFAR) idea is to use a simple empirical mean to
estimate µ – actually this is the optimal estimator based on most reasonable
criteria, assuming a homogeneous window. That is, we have

µ̂ =
1

n

nX

i=1

yi ⌘
1

n
y (160)

in which {yi}
n

i=1 are the n reference cells, assumed independent and dis-
tributed as exponential with mean µ. We have that the sum y has Gamma
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pdf

f(y) =
y
n�1

(n� 1)!µn
e
�y/µ

u(y) (161)

Let us assume that the test cell x has pdf

f(x) =
1

�µ
e
�x/(µ�)

u(x) (162)

where under H we have � = 1 and under K we have � = (1 + S), in which
S is the SNR. Then we have

Pr(x > ⌧y/n) =
Z 1

0

Z 1

⌧y/n

1

µ�
e
� x

µ�
y
n�1

(n� 1)!µn
e
� y

µu(y)dxdy (163)

=
Z 1

0
e
� ⌧y

nµ�
y
n�1

(n� 1)!µn
e
� y

µu(y)dy (164)

=
Z 1

0

y
n�1

(n� 1)!µn
e
�y

�
⌧

n�µ
+ 1

µ

�
u(y)dy (165)

=
✓

⌧

n�µ
+

1

µ

◆�n

µ
�n (166)

=
1�

1 + ⌧

n�

�
n (167)

Note that this does not depend on µ – meaning that this scheme is CFAR
– and also that we have

lim
n!1

Pr(x > ⌧y/n) = e
�⌧/� (168)

which is satisfying. At any rate, we have

↵ =
1�

1 + ⌧

n

�
n (169)

� =
1⇣

1 + ⌧

n(1+S)

⌘
n (170)

In general, n = 8 is quite large enough.

6.2 OS-CFAR

A concern with CA-CFAR is that it is sensitive to targetmasking by elements
in the reference window that are not homogeneous with the others. This
may happen, for instance, when there are closely-spaced targets: it would
be a bad system indeed if the best counter-measure were to have more than
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one target. Use of an order-statistic (OS-CFAR) approach seems to be
considerably more robust.

Suppose we order the elements of the reference window, {yi}, from small-
est to largest, according to

y(1)  y(2)  y(3)  . . .  y(n) (171)

According to Bayes, we have

f({y(i)}|{yi})f({yi}) = f({yi}|{y(i)})f({y(i)}) (172)

Since the first item on the LHS is deterministic, we have

f({y(i)}) =
f({y(i)}|{yi})

f({yi}|{y(i)})
f({yi}) (173)

= n!f({y(i)}) (174)

=
n!

µn
e
� 1

µ

P
n

i=1
yi (175)

Suppose we define

�i ⌘

(
y(1) i = 1
y(i) � y(i�1) else

(176)

We can re-write (175) as

f({yi}) =
n!

µn
e
� 1

µ

P
n

i=1

⇣P
i

j=1
�i

⌘

(177)

=
n!

µn
e
� 1

µ

P
n

i=1
(n�i+1)�i (178)

This gives the – very surprising! – result that the di↵erences {�i} are inde-
pendent and exponentially-distributed, meaning

f(�i) =
n� i+ 1

µ
e
�n�i+1

µ
�i (179)

This means that if x has an exponential pdf with mean µ� (parsimonious
development as for CA-CFAR), our exceedance probability is

Pr(x > ⌧y(k)) = Pr

 

x > ⌧

 
kX

i=1

�i

!!

(180)
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=
Z 1

0
. . .

Z 1

0
e
�

⌧

⇣P
k

i=1
�i

⌘

µ�

 Q
k

i=1(n� i+ 1)

µk

!

⇥ e
�
P

k

i=1

�
n�i+1

µ

�
�i
d�1 . . . d�k (181)

=
Z 1

0
. . .

Z 1

0

 Q
k

i=1(n� i+ 1)

µk

!

⇥ e
�
P

k

i=1

�
n�i+1

µ
+ ⌧

µ�

�
�i
d�1 . . . d�k (182)

=

✓Q
k

i=1
(n�i+1)

µk

◆

Q
k

i=1

⇣
(n�i+1)

µ
+ ⌧

µ�

⌘ (183)

=
1

Q
k

i=1

⇣
1 + ⌧

(n�i+1)�

⌘ (184)

=
1

Q
n

i=n�k+1

�
1 + ⌧

i�

� (185)

We thus get

↵ =
1

Q
n

i=n�k+1

�
1 + ⌧

i

� (186)

� =
1

Q
n

i=n�k+1

⇣
1 + ⌧

i(1+S)

⌘ (187)

which again are independent of µ and are both nicely computable.
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1 The Test

Suppose we have observations

xmn = ⌫mn + ✓sn, m = 1, 2, . . . ,M & n = 1, 2, . . . , N (1)

The “noise” ⌫mn is iid with pdf f(·). Notionally (1) models an array detec-
tion situation in which the array is steered (with appropriate delays) such
that the “signal” at each time n is the same at each array element.

The “signal” sn is not independent, but instead has joint pdf fs(·). The
model is not completely general since the noise could also be dependent; but
that the signal {sm} could actually be {smn} is actually equivalent to the
case N = 1 and M replaced by MN . Note that if one is interested in the
time-series detection problem (no array) simply set M to unity.

We have

f(x) =
Z MY

m=1

NY

n=1

f(xmn � ✓sn)fs(s)ds (2)

and hence

d

d✓
f(x) =

Z MX

m=1

NX

n=1

Pmn(✓)(�sn)ḟ(xmn � ✓sn)fs(s)ds (3)

in which

Pmn(✓) ⌘
QM

r=1
QN

s=1 f(xrs � ✓sr)

f(xmn � ✓sn)
(4)
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If any of the sn’s has a non-zero mean then we are done: the test would be

Tlo(x) =
MX

m=1

NX

n=1

µnglo(xmn) (5)

which is not so interesting – but what perhaps is interesting is that even if
only one µn is non-zero, that value of n is all that is taken into account in
the test.

At any rate, if all the µn are zero we need to take another derivative.
We get

d2

d✓2
f(x) (6)

Z MX

m=1

NX

n=1

Pmn(✓)(s
2
n)f̈(xmn � ✓sn)fs(s)ds

+
Z MX

m=1

NX

n=1

MX

p=1

NX

q=1

P(mn),(pq)(✓)snsqḟ(xmn � ✓sn)ḟ(xpq � ✓sq)fs(s)ds

in which

P(mn),(pq)(✓) ⌘
QM

r=1
QN

s=1 f(xrs � ✓sr)

f(xmn � ✓sn)f(xpq � ✓sq)
(7)

Now since the generalized Neyman-Pearson Lemma tells us that our locally-
optimal test statistic ought to be

Tlo(x) =
d2

d✓2 f✓(x)|✓=0

f✓(x)|✓=0
(8)

we get

Tlo(x) =
Z MX

m=1

NX

n=1

(s2n)hlo(xmn)fs(s)ds (9)

+
Z MX

m=1

NX

n=1

MX

p=1

NX

q=1

snsqglo(xmn)glo(xpq)fs(s)ds

=
MX

m=1

NX

n=1

hlo(xmn) (10)

+
MX

m=1

NX

n=1

MX

p=1

NX

q=1

r(n� q)glo(xmn)glo(xpq)
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in which we have assumed wlog that sn is wss and unity power, and we have
defined

hlo(x) ⌘ f̈(x)

f(x)
� (glo(x))

2 (11)

In the case that M = 1 (no array) we might write this as

Tlo(x) =
NX

n=1

hlo(xn) + [glo(x)]
TR[glo(x)] (12)

and hence comfort ourselves.
For the case that f(x) is Gaussian we have

f(x) =
1p
2⇡�

e�
x2

2�2 (13)

ḟ(x) =
�x

�2
f(x) (14)

f̈(x) =

 
x2

�4
� 1

�2

!

f(x) (15)

which means that

hlo(x) = � 1

�2
(16)

can be ignored and we get our expected quadratic form.
An especially interesting case arises when f(x) is Laplace, the signal is

uncorrelated over time, and M = 2. We get

f(x) =
1

2↵
e�|x|/↵ (17)

ḟ(x) = �sign(x)
1

↵2
f(x) (18)

f̈(x) = (1� 2�(x)) f(x) (19)

which, allowing ourselves to ignore the �(x), implies that

Tlo(x) =
NX

n=1

sign(x1n)sign(x2n) (20)

known as the polarity coincidence correlator, or PCC. The structure extends
nicely: for example with M = 3 we get

Tlo(x) =
NX

n=1

[sign(x1n)sign(x2n) + sign(x1n)sign(x3n) + sign(x2n)sign(x3n)]

(21)
If the signal is expected to be consistent – at least in sign – across all array
elements, this is a pleasing structure,
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2 Performance

2.1 Random Signal E�cacy

We resort to the central limit theorem and e�cacy, of course. But there is
a subtlety. Consider our previous small-signal development, in which the
signal strength is ✓l, the test �(x) uses n samples, and we have (no loss of
generality)

n = (l)2l (22)

Then we get

↵ = Q
✓
⌧ � µn(0)

�n(0)

◆
(23)

� = Q
✓
⌧ � µn(✓l)

�n(✓l)

◆
(24)

and eventually find

� = Q
✓
Q�1(↵)� µn(✓l)� µn(0)

�n(0)

◆
(25)

which we in our previous development approximated as

� = Q
✓
Q�1(↵)� ✓lµ̇n(0)

�n(0)

◆
(26)

The problem is that

µ̇n(0) =
d

d✓

✓Z

x

Z

s
T (x)f(x� ✓s)fs(s)dsdx

◆

✓=0
(27)

=
✓Z

x

Z

s
T (x)sḟ(x� ✓s)fs(s)dsdx

◆

✓=0
(28)

=
✓Z

x
T (x)sḟ(x)dx

◆✓Z

s
fs(s)ds

◆
(29)

= 0 (30)

which should be obvious, anyway, from unbiasedness arguments. That
means (26) should be replaced by

� = Q

 

Q�1(↵)� 1

2

✓2l µ̈n(0)

�n(0)

!

(31)
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Operating in parallel to the previous development we have

� = Q

 

Q�1(↵)� 1

2

✓2l
p
nµ̈n(0)p
n�n(0)

!

(32)

= Q
✓
Q�1(↵)� 1

2
✓2l
p
n


µ̈n(0)p
n�n(0)

�◆
(33)

Assuming that

⇠ ⌘ lim
n!1

1

4


µ̈n(0)p
n�n(0)

�2
(34)

is a limit that converges, we see that in order for the performance of the test
to be nontrivial we must have

✓l =
�

l1/4
(35)

as opposed to the previous (known signal) case in which we had proportion-
ality to the inverse square root. At any rate, we thence have

� = Q

 

Q�1(↵)� c
�2p
l

p
n
p
⇠

!

(36)

= Q
⇣
Q�1(↵)� �2

p
⇠
⌘

(37)

meaning that for two detectors (A & B) to have the same operating point
we have

AREB,A =
nA

nB
(38)

=
2A
2B

(39)

=
⇠B
⇠A

(40)

(see (37) for the second line and (22) for the third) as we would expect
with e�cacy. The new pattern for the (slower) way that the signal strength
decreases to zero in (35) is interesting and perhaps informing of the renewed
di�culty in detecting random signals; but it is perhaps more a mathematical
note. However, the new definition of e�cacy in (34) is a fact and cannot be
ignored in our analysis. The factor of 1/4 in (34) does not contribute much,
but as a matter of form we keep it.
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2.2 General Array Correlator E�cacy Expressions

The locally-optimal test statistic for our model has been shown to be

T (x) =
nX

i=1

2

4
MX

j=1

hlo(Xji)

3

5 +
nX

i=1

nX

m=1

r(i�m)

2

4
MX

j=1

glo(Xji)

3

5

2

4
MX

p=1

glo(Xpm)

3

5

(41)
where

hlo(x) =
f̈(x)

f(x)
�
"
ḟ(x)

f(x)

#2
(42)

glo(x) = � ḟ(x)

f(x)
(43)

and ḟ(·) and f̈(·) are first two derivatives of f(·). Note that in the case
M = 1 (a single sensor) this reduces to

T (x) =
nX

i=1

hlo(Xi) +
nX

i=1

nX

m=1

r(i�m)glo(Xi)glo(Xm) (44)

Computing the performance of this test is not trivial, and previous treat-
ments have dealt only with the white noise case. It will be helpful to derive
the e�cacy of a generalized correlator

T (x) =
nX

i=1

2

4
MX

j=1

h(Xji)

3

5+
nX

i=1

nX

m=1

⇢(i�m)

2

4
MX

j=1

g(Xji)

3

5

2

4
MX

p=1

g(Xpm)

3

5 (45)

which has the same structure as the LMO detector. For best performance
h and g ought to take on their LO values of (42) and (43) according to the
actual noise density f ; and ⇢ should be the actual signal autocorrelation r.
However, these may be unknown, and in order that a robust detector be
identified it is important to develop an expression for the performance of an
arbitrary statistic having the structure of (45).

We calculate the e�cacy of a statistic as defined in (45). Here the actual
(white) noise has symmetric density f(·), and the actual signal correlation
is r(k). We re-write the statistic as

T (x) = T1(x) + T2(x) + T3(x) (46)

where

T1(x) =
nX

i=1

MX

j=1

e(Xji) (47)
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T2(x) =
nX

i=1

nX

m=1
m 6=i

⇢(m� i)
MX

j=1

g(Xji)
MX

p=1

g(Xpm) (48)

T3(x) =
nX

i=1

MX

j=1

X

p=1
p 6=j

g(Xji)g(Xpm) (49)

and
e(x) = h(x) + g2(x) (50)

Proceeding with the numerator first, we write

@2

@✓2
E✓ [T (x)]✓=0 =

@2

@✓2
[N1(✓)]✓=0 +

@2

@✓2
[N2(✓)]✓=0 +

@2

@✓2
[N3(✓)]✓=0

(51)
where the Nj are expected values of the components of T , as given below.
For the first term we write

N1(✓) = E✓

8
<

:

nX

i=1

MX

j=1

e(Xji)

9
=

; (52)

or

N1(✓) =
nX

i=1

MX

j=1

Z Z
e(xji)f(xji � ✓si)fs(s)dsdxji (53)

Taking the derivative we get

@2

@✓2
[N1(✓)]✓=0 =

nX

i=1

MX

j=1

Z Z
e(xji)s

2
i f̈(xji � ✓si)fs(s)dsdxji (54)

and evaluating at ✓ = 0 we write

@2

@✓2
[N1(✓)]✓=0 = nM

Z
ef̈ (55)

where for notational ease we have suppressed the dependence on the variable
of integration. Proceeding with the second term we write

N2(✓) = E✓

8
>><

>>:

nX

i=1

nX

m=1
m 6=i

MX

j=1

MX

p=1

⇢(m� i)g(Xji)g(Xpm)

9
>>=

>>;
(56)
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or

N2(✓) =
nX

i=1

nX

m=1
m 6=i

MX

j=1

MX

p=1

⇢(m� i)
Z Z Z

g(xji)g(xpm)

⇥ f(xji � ✓si)f(xpm � ✓sm)fs(s)dsdxjidxpm (57)

Taking the derivative and evaluating at ✓ = 0 we get

@2

@✓2
[N2(✓)]✓=0 =

nX

i=1

nX

m=1
m 6=i

MX

j=1

MX

p=1

⇢(m� i)2
Z

gḟ
�2

r(m� i) (58)

or
@2

@✓2
[N2(✓)]✓=0 =

nX

i=1

nX

m=1
m 6=i

⇢(m� i)r(m� i)2M2
Z

gḟ
�2

(59)

or
@2

@✓2
[N2(✓)]✓=0 = 4M2

n�1X

k=1

⇢(k)r(k)(n� k)
Z

gḟ
�2

(60)

For the third term we write

N3(✓) = E✓

8
>>><

>>>:

nX

i=1

MX

j=1

MX

p=1
p 6=j

g(Xji)g(Xpm)

9
>>>=

>>>;
(61)

or

N3(✓) =
nX

i=1

MX

j=1

MX

p=1
p 6=j

Z Z Z
g(xji)g(xpm)

⇥ f(xji � ✓si)f(xpi � ✓si)fs(s)dsdsjidxpi (62)

Taking the derivative and evaluating at ✓ = 0 we get

@2

@✓2
[N3(✓)]✓=0 =

nX

i=1

MX

j=1

MX

p=1
p 6=j

2
Z

gḟ
�2

(63)

or
@2

@✓2
[N3(✓)]✓=0 = 2nM(M � 1)

Z
gḟ
�2

(64)
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Taking all these terms together we can write

@2

@✓2
E✓ [T (x)]✓=0 = (65)

nM
Z

ef̈
�
+ 2nM

"

(M � 1) + 2M
n�1X

k=1

r(k)⇢(k)(1� k/n)

# Z
gḟ
�2

for the numerator.
Now, examining the denominator, we note that to calculate the variance

we need an expression for the test statistic’s mean value under the noise-
alone hypothesis. Recalling that by assumption f is even and g is odd, we
can easily obtain

E0(T (x)) = nM
Z

ef (66)

We split the second moment into six expressions as

E0(T 2(x)) = D11(0)+D22(0)+D33(0)+2D12(0)+2D13(0)+2D23(0) (67)

The first three of these terms can be written as

D11(0) = E0

8
><

>:

0

@
nX

i=1

MX

j=1

e(Xji)

1

A
2
9
>=

>;
(68)

= nM
Z

e2f + (n2M2 � nM)
Z

ef
�2

(69)

D22(0) = E0

8
>><

>>:

0

BB@
nX

i=1

nX

m=1
m 6=i

⇢(m� i)
MX

j=1

g(Xji)
MX

p=1

g(Xpm)

1

CCA

29>>=

>>;
(70)

= 4M2
n�1X

k=1

⇢2(k)(n� k)
Z

g2f
�2

(71)

D33(0) = E0

8
>>><

>>>:

0

BBB@

nX

i=1

MX

p=1

MX

p=1
p 6=j

g(Xji)g(Xpi)

1

CCCA

29>>>=

>>>;
(72)

= 2nM(M � 1)
Z

g2f
�2

(73)
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The assumption
R
gf = 0 implies that all three cross-terms are zero, hence

we write
D12(0) = D13(0) = D23(0) (74)

Combining all terms we write

V0 {T (x)} = nM

 Z
e2f �

Z
ef
�2!

(75)

+ 2nM

 

(M � 1) + 2M
n�1X

k=1

⇢2(k)(1� k/n)

!Z
g2f

�2

for the denominator.
Combining the numerator and denominator and taking the limit as n !

1, we write

⇠ =
M

4

✓R
ef̈ + 2

⇥
�1 +M

P1
k=�1 r(k)⇢(k)

⇤ hR
gḟ
i2◆2

⇣R
e2f � [

R
ef ]2 + 2

⇥
�1 +M

P1
k=�1 ⇢2(k)

⇤
[
R
g2f ]2

⌘ (76)

for the e�cacy, and replacing e by h+ g2 we get the result

⇠ =
M

4

✓R
[h+ g2]f̈ + 2

⇥
�1 +M

P1
k=�1 r(k)⇢(k)

⇤ hR
gḟ
i2◆2

⇣R
[h+ g2]2f � [

R
[h+ g2]f ]2 + 2

⇥
�1 +M

P1
k=�1 ⇢2(k)

⇤
[
R
g2f ]2

⌘

(77)
We can use Parseval’s relation to write

1X

k=�1
r1(k)r2(k) =

1

2⇡

Z ⇡

�⇡
�1(!)�2(!)d! (78)

in which

�i(!) =
1X

k=�1
ri(k)e

�j!k (79)

is the spectrum corresponding to an autocorrelation sequence ri. We can
identify r1 and r2 variously as r (the actual correlation) and as ⇢ (the as-
sumed correlation), and can hence re-write (77) as

⇠ = (80)

M

4

✓R
[h+ g2]f̈ + 2

h
�1 + M

2⇡

R ⇡
�⇡ �r(!)�⇢(!)d!

i hR
gḟ
i2◆2

⇣R
[h+ g2]2f � [

R
[h+ g2]f ]2 + 2

h
�1 + M

2⇡

R ⇡
�⇡ �

2
⇢(!)d!

i
[
R
g2f ]2

⌘

It is instructive to note:

10



• With an accurate estimate of the signal correlation (i.e. ⇢(k) = r(k)),
(77) reduces to:

⇠ = (81)

M

4

✓R
[h+ g2]f̈ + 2

h
�1 + M

2⇡

R ⇡
�⇡ �

2
r(!)d!

i hR
gḟ
i2◆2

⇣R
[h+ g2]2f � [

R
[h+ g2]f ]2 + 2

h
�1 + M

2⇡

R ⇡
�⇡ �

2
r(!)d!

i
[
R
g2f ]2

⌘

• With an accurate estimate of the noise density f , we can write g = glo
and h = hlo; the e�cacy expression (77) thus reduces to:

⇠ =
M

4

✓R (f̈)2

f + 2
h
�1 + M

2⇡

R ⇡
�⇡ �r(!)�⇢(!)d!

i
[I(f)]2

◆2

✓R (f̈)2

f + 2
h
�1 + M

2⇡

R ⇡
�⇡ �

2
⇢(!)d!

i
[I(f)]2

◆ (82)

where I(f) =
R (ḟ)2

f is Fisher’s information.

• The e�cacy of a locally-optimal detector can be written as

⇠ =
M

4

 Z
(f̈)2

f
+ 2


�1 +

M

2⇡

Z ⇡

�⇡
�2
r(!)d!

�
[I(f)]2

!

(83)

In the latter two cases we have used the fact that E0{hlo+g2lo} ⌘ 0. In general
E0{h + g2} 6= 0. As expected, the performance improves with increased
correlation between signal samples. It is instructive to observe (for the
locally-optimal case) that with r(k) ⌘ 1, the e�cacy is infinite – this is
tantamount to the known signal problem, for which the e�cacy of (77) is
inappropriate and must be modified.

The equations above represent di↵erent levels of knowledge about the
statistical test. In (83) all parameters are known and the (LO) test is used.
In (82) the noise density f is known, but the precise form of the signal
correlation structure is not. This is a situation in which it is reasonable
to seek a robust ⇢, the performance of whose corresponding detector is not
degraded as the actual correlation (r) varies over its uncertainty class. In
(81) the correct signal correlation is known but the noise density is not, and
it is reasonable to seek a detector whose nonlinearities g and h engender a
similar lack of degradation as the actual noise density f varies.
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1 The Big Three

1.1 Introduction

As indicated much earlier in these notes, a composite test is one in which
either or both of ⌦H or ⌦K is not a singleton – usually it is ⌦K . Unfortu-
nately, many of our practical testing situations are composite. There were
several ideas that might be tried, among them

• Attempt to put a prior on ✓. When this is reasonable, the likelihood
ratio test can be used.

• Look for a uniformly most-powerful (UMP) test.

• When some part of ✓ relates to the size of the signal, use a locally-most
powerful approach. Much of our small-signal analysis has investigated
such approaches, under the assumption that for large signals prac-
tically any reasonable approach works well so focusing on the most
di�cult cases is the most rewarding strategy.

• Use a maximum likelihood method.

This section of the course will focus on the last. We will discuss the gen-
eralized likelihood ratio test (GLRT), the Wald test and the Rao (-score)
test.

1.2 The GLRT

The generalized likelihood ratio (GLR) is

TGLR(x) ⌘
max✓2⇥K

{f(x|✓)}

max✓2⇥H
{f(x|✓)}

(1)
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to be compared to a threshold. Earlier in these notes two example GLRTs
were given. One was

H : x = ⌫

K : x = e✓ + ⌫ (2)

in which ej is the j
th Cartesian basis vector, and the (obvious) GLRT

T (x) = max
i

{xi} (3)

was proposed. A second was

x = A✓ + ⌫ (4)

in which ⌫ is Gaussian with mean zero and covariance R⌫ = �
2I, and A is

a known skinny matrix – “skinny” means that A has more columns than
rows. This can be formalized as

f(x|✓) =
✓

1
p

2⇡�2

◆
n

e
� 1

2�2 (x�A✓)T (x�A✓) (5)

with ✓ an m-vector and where ⇥H = {0} and ⇥K = {✓ : ✓ 6= 0}. Provided
m < n (n is the length of x) we have the MLE

✓̂ = (ATA)�1ATx (6)

which means that the “signal” in the derived simple hypothesis test is

ŝ = A(ATA)�1ATx (7)

and hence the GLR (the derived matched filter) is

T (x) = xTA(ATA)�1ATx (8)

It is interesting to compare this linear-mode GLRT to another (reasonable)
assumption that ✓ is Gaussian with mean zero and covariance R✓. The
(most-powerful!) test is now

T (x) = xT

✓
R�1

⌫ �

⇣
AR✓A

T +R⌫

⌘�1
◆
x (9)

which is not the same. The di↵erence is that there is a prior on ✓ that biases
it toward the origin in (9) but not in (8).

The GLRT is quite general, since maximization does not require that a
gradient method or similar be at the heart of finding the MLE – (2) is an
obvious example of just that – and maximization can be over both ⇥H and
⇥K . The two tests that follow (Wald and Rao) require that ⇥H = {✓0} –
that is, that the null hypothesis be a “signal-absent” singleton – and depend
loosely on continuity and di↵erentiability of ⇥K . But they are somewhat
simpler and can be more implementable.
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1.3 The Wald Test

Let us assume that⇥H = {✓0}. Suppose we make a small-signal (i.e., Taylor)
approximation around an arbitrary value ✓1:

log (f(x|✓0)) ⇡ log (f(x|✓1)) + (✓0 � ✓1)

d

d✓
log (f(x|✓))

�

✓=✓1

(10)

This is fine, except that as motivated by the GLRT idea we would like to
choose the maximum-likelihood estimate ✓1 = ✓̂ = max✓2⇥K

{f(x|✓}; and
for that we usually have


d

d✓
log (f(x|✓))

�

✓=✓1

= 0 (11)

since ✓̂ is a critical point. As such, it is worth exploring the next Taylor
term

log (f(x|✓0)) ⇡ log (f(x|✓1)) + (✓0 � ✓1)

d

d✓
log (f(x|✓))

�

✓=✓1

+
1

2
(✓0 � ✓1)

T

"
d
2

d✓
log (f(x|✓))

#

✓=✓1

(✓0 � ✓1) (12)

Now we evaluate this at ✓1 = ✓̂ and get

log

 
f(x|✓̂)

f(x|✓0)

!

= log
⇣
f(x|✓̂)

⌘
� log (f(x|✓0)) (13)

=
1

2
(✓0 � ✓̂)T

"
d
2

d✓2
log (f(x|✓))

#

✓=✓̂

(✓0 � ✓̂) (14)

Now we approximate Fisher’s information

I(✓̂) = � E

(
d
2

d✓2
log (f(x|✓))

)

(15)

⇡ �

"
d
2

d✓2
log (f(x|✓))

#

✓=✓̂

(16)

and write the Wald test statistic as

TWald(x) = (✓̂ � ✓0)
T
I(✓̂)(✓̂ � ✓0) (17)

The Wald test is eminently justifiable as above. Its (possibly) unattractive
feature is that it requires that Fisher’s information be calculated for each ✓̂

– that is, for each x.
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1.4 The Rao Test

It should be understood that subject to regularity conditions – loosely: dif-
ferentiability and continuity of ✓ in ⇥K – we have that

✓̂ ⇠ N (✓0, I(✓0)
�1) (18)

assuming the true value of ✓ = ✓0 and that ✓̂ is its ML estimate. Now
consider the “score” (the derivative of the log-likelihood)

d

d✓
log (f(x|✓1)) ⇡

d

d✓
log (f(x|✓0)) + (✓1�✓0)

"
d
2

d✓2
log (f(x|✓))

#

✓=✓0

(19)

Now if we evaluate (19) at ✓1 = ✓̂ the left side is zero and we have

d

d✓
log (f(x|✓0)) ⇡ � (✓̂ � ✓0)

"
d
2

d✓2
log (f(x|✓))

#

✓=✓0

(20)

⇡ � (✓̂ � ✓0)I(✓0) (21)

This implies that
d

d✓
log (f(x|✓0)) ⇠ N (0, I(✓0)) (22)

An obvious goodness-of-fit statistic is therefore

TRao(x) =

d

d✓
log (f(x|✓0))

�T
I(✓0)

�1

d

d✓
log (f(x|✓0))

�
(23)

Two very nice features of the Rao test relative to the Wald test are that no
maximization is necessary, nor is there a need to evaluate the Fisher matrix
more than once.

However, beyond that, an especially nice Rao test feature is that under
H and asymptotically, the test statistic TRao(x) is �2 with number of degrees
of freedom equal to the dimension of ✓.

2 Bernoulli Example: Time-Varying Probabilities

2.1 GLRT

Suppose that one models that the probability of success in a series of N
trials as being time-varying; that is

pn = Pr(zn = 1) = 1� Pr(zn = 0) (24)
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where this probability is posited to be known. Does our data {zn}
N
n=1 2

{0, 1}⇥N fit the model? We have

p(z|✓) =
NY

n=1

✓
zn
n (1� ✓n)

1�zn (25)

in which ⇥H = {✓n = pn} and ⇥K = {✓n 6= pn}.
The generalized likelihood ratio

TGLR(z) ⌘
max✓2⇥K

{p(z|✓))}

max✓2⇥H
{p(z|✓)}

(26)

is di�cult to beat. Then the denominator is obvious, and

TGLR(z) =
max{✓n} 6={pn}{

Q
N

n=1 ✓
zn
n (1� ✓n)1�zn}

Q
N

n=1 p
zn
n (1� pn)1�zn

(27)

=

 
NY

n=1

p
zn
n (1� pn)

1�zn

!�1

(28)

Taking the logarithm and removing irrelevant constants, we get an equiva-
lent test statistic:

T (z) =
NX

n=1

zn log
✓
1� pn

pn

◆
(29)

which is a weighted sum of the tests’ successes. The performance can be
predicted via the central limit theorem:

E{T (z|H)} =
NX

n=1

log
✓
1� pn

pn

◆
pn (30)

and variance

V{T (z)|H} =
NX

n=1

✓
log

✓
1� pn

pn

◆◆2

pn(1� pn) (31)

An appropriate test is

decision =

(
accept T (z)� E0{T (z)}  ⌧

reject T (z)� E0{T (z)} > ⌧
(32)

A satisfactory threshold ⌧ can be calculated as

⌧ = Q
�1(Pfa)

vuut
NX

n=1

✓
log

✓
1� pn

pn

◆◆2

pn(1� pn) (33)
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Here Q(·) is the unit-normal tail probability

Q(y) ⌘

Z 1

y

1
p
2⇡

e
�t

2
/2
dt (34)

Pr(x > ⌧) = Q

 
⌧ � E{x}
p
V{x}

!

(35)

Assuming the actual probabilities are {qn} instead of {pn}, we have

Pd = Q

0

BB@
⌧ �

P
N

n=1 log
⇣

pn

1�pn

⌘
(qn � pn)

r
P

N

n=1

⇣
log

⇣
pn

1�pn

⌘⌘2
qn(1� qn)

1

CCA (36)

to plot our ROC.
For comparison, consider optimal (unrealizable) case both {qn} & {pn}

known.

LLR(z) =
NX

n=1

zn


log

✓
qn

1� qn

◆
� log

✓
pn

1� pn

◆�
(37)

Example results are shown in figure 1.
Suppose we modified the test such that we required that the alternative

hypothesis was that we could only do better than {pn}. That would mean
that under the alternative hypothesis ✓n > pn. As usual we write

f(z|✓) =
NY

n=1

✓
zn
n (1� ✓n)

1�zn (38)

and

⇥H = {✓n = pn} (39)

⇥K = {✓n > pn} (40)

The GLRT requires

max
✓2⇥K

(
NY

n=1

✓
zn
n (1� ✓n)

1�zn

)

=
Y

zn=1

(1)zn
Y

zn=0

(1� pn)
1�zn (41)

=
NY

n=1

(1� pn)
1�zn (42)

The GLR is thus

L(z) =

Q
N

n=1(1� pn)1�zn

Q
N

n=1 p
zn
n (1� pn)1�zn

(43)

=
NY

n=1

(1/pn)
zn (44)
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Figure 1: Test for a constant qn versus a time-varying pn. Upper plot shows
pn and a particular qn. Lower plot shows Pd vs level of qn. The GLRT does
acceptably.

An equivalent test statistic is

T (z) =
NX

n=1

zn log(1/pn) (45)

The mean under H is

E{T (z)|H} =
NX

n=1

pn log(1/pn) (46)

with corresponding variance

V{T (z)|H} =
NX

n=1

pn(1� pn) (log(1/pn))
2 (47)

An example of performance and comparison the the “freer” test presented
earlier are given in figure 2.
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2.2 The Wald Test

Similar to the GLRT, if ⇥K = {✓n 6= pn} then

argmax✓2⇥K
= {zn} (48)

Now

I(✓) = E

(
d
2

d✓2
log(p(z|✓))

)

(49)

= E

(
d
2

d✓2

NX

n=1

[zn log(✓n) + (1� zn) log(1� ✓n)]

)

(50)

=

0

BBBBB@

1
✓1(1�✓1)

0 . . . 0

0 1
✓2(1�✓2)

. . . 0
...

...
. . .

...
0 0 . . .

1
✓N (1�✓N )

1

CCCCCA
(51)

Clearly this presents problems because this is infinite at (48). Put another
way, there is no Wald test in this case.

2.3 The Rao Test

From (51) we have that

I(✓0) =

0

BBBBB@

1
p1(1�p1)

0 . . . 0

0 1
p2(1�p2)

. . . 0
...

...
. . .

...
0 0 . . .

1
pN (1�pN )

1

CCCCCA
(52)

We also have

d

d✓
log(p(z|✓))

����
✓=✓0

=
d

d✓

NX

n=1

[zn log(✓n) + (1� zn) log(1� ✓n)]

�����
✓n=pn

(53)

=
NX

n=1


zn

pn
�

1� zn

1� pn

�
(54)

These, with (23), tell us that

TRao(z) =
NX

n=1

8
><

>:

pn

1�pn
zn = 0

1�pn

pn
zn = 1

(55)

It is instructive (but comforting) to note that E{TRao(z)} = N , as predicted.
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Figure 2: Test qn = pn plus a shift. Upper plot shows pn and a particular
qn. Lower plot shows Pd vs level of qn. The GLR test is not so good, and the
alternative GLR that tests only for an increase in {pn} is more reasonable.
The Rao test is better than the one-sided GLRT in this case; but that neither
is as good as the alternative GLR test is perhaps a little unfair, since that
test uses information not available to them.
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