
IEEE INTERNET OF THINGS JOURNAL (REVISED) 1

An Advanced GNU Radio Receiver of IEEE
802.15.4 OQPSK Physical Layer

Evan Faulkner, Zelin Yun, Shengli Zhou, Zhijie Shi, Song Han, and Georgios B. Giannakis

Abstract—In this paper, we present an advanced coherent
receiver for the IEEE 802.15.4 offset-quadrature-phase-shift-
keying (OQPSK) physical layer and provide an open-source
implementation in the GNU Radio framework. Simulation and
field test results show that the proposed receiver achieves about 11
dB power gain over an existing GNU Radio receiver, which treats
OQPSK as minimum-shift-keying (MSK) for low-complexity pro-
cessing. While suitable modules can be added to the MSK-based
receiver for performance enhancement, the proposed receiver still
maintains a 6 dB power gain. The proposed coherent receiver
is attractive for IoT applications where a powerful software-
defined-radio (SDR) based gateway is deployed to interact with
various sensors.

Index Terms—IoT, IEEE 802.15.4, OQPSK, SDR, GNU-Radio

I. INTRODUCTION

THE IEEE 802.15.4 standard was developed in 2003 and
has since undergone multiple rounds of revisions [1], [2].

The standard deals with physical layer and medium access
control techniques for numerous low-rate wireless local area
networks such as ZigBee, 6LoWPAN, and WirelessHART [3]–
[7], and will remain popular for emerging IoT applications [3].

This paper focuses on the physical layer that relies on Offset
Quadrature Phase Shift Keying (OQPSK). At the transmitter,
each group of four bits in the data packet is mapped to a
sequence of 32 chips, which corresponds to a direct-sequence
spread spectrum (DSSS) operation. The chip sequence is
divided into I and Q branches and passes through a half-sine
pulse shaper. The waveform on the Q branch is delayed by one
chip period, and hence an OQPSK waveform is generated. The
overall process yields a carefully designed 16-ary modulation
scheme consisting of 16 nearly-orthogonal waveforms. On the
other hand, OQPSK can be viewed as minimum-shift-keying
(MSK) modulation over a transformed chip sequence [8].
For clarity, we next discuss existing IEEE 802.15.4 receiver
designs depending on whether the modulation is treated as
OQPSK or MSK.

A. OQPSK-based Receiver

A complete receiver includes modules for carrier frequency
synchronization, chip/symbol timing, and data detection, al-
though the orders might change depending on a particular im-
plementation. While simulation-based studies tend to focus on

Evan Faulkner and Shengli Zhou are with the Department of Electrical and
Computer Engineering, University of Connecticut, Storrs, CT, 06250.

Zelin Yun, Zhijie Shi, and Song Han are with the Department of Computer
Science and Engineering, University of Connecticut, Storrs, CT, 06250.

Georgios B. Giannakis is with the Department of Electrical and Computer
Engineering, University of Minnesota, Minneapolis, MN, 55455.

one or two key modules, a fully-functional receiver requires all
modules to be implemented. We categorize existing references
according to the modules they address:

• Data detection. In the presence of additive white Gaus-
sian noise (AWGN), tight union bounds on the probability
of error for both coherent and noncoherent maximum
likelihood (ML) detectors with known signal parameters
are derived in [9]. A simple detector based on a double-
correlation operation is developed in [10] that nearly
reaches the performance of noncoherent ML detector in
the presence of a large carrier frequency offset (CFO).
The noncoherent demodulator in [11] replaces the com-
plex correlation metrics in the coherent ML receiver
by their magnitudes, which achieves robustness against
phase mismatch and frequency offset.

• Synchronization. A carrier synchronization algorithm is
proposed in [12] by measuring the slope of phase drifts
on the complex baseband samples corresponding to the
synchronization header of the data packet. In [13], carrier
synchronization is accomplished by the Costa’s loop and
symbol synchronization is pursued via the early-late-gate
timing recovery method.

• Full-receiver implementation. A digital baseband
transceiver is implemented in [14] using FPGA and
CMOS technologies, where a noncoherent demodulator
is adopted. A coherent receiver is implemented in
[15] using MATLAB based on data samples from
a software-defined-radio (SDR) device. Similarly, an
extensive evaluation of a coherent receiver is carried
out in [16] using MATLAB. Recently, a coherent
OQPSK receiver with a decision-directed residual phase
noise compensation procedure has been implemented
in [17] under a dual-mode architecture, where the
receiver could switch into low-complexity MSK-
based processing depending on channel conditions or
performance requirements. The dual-mode receiver is
evaluated in [17] along with FPGA prototyping and
ASIC implementation.

B. MSK-based Receiver
The receiver treats the OQPSK waveform as an analog MSK

waveform and uses a phase differential operation to obtain
an estimate of the instantaneous frequency of the received
signal. Timing recovery is then applied to achieve chip level
synchronization, followed by a despreading operation for data
detection. This receiver bypasses the need for carrier frequency
synchronization and timing recovery is operated on real,
instead of complex, baseband signals.

IEEE INTERNET OF THINGS JOURNAL (REVISED) 2

Wireless Gateways
with COTS

802.15.4 Radio

Historian HMI Terminal Server

Low-Power Wireless
Sensing/Actuation Devices

Industrial Wireless Edge Network

Wireless Gateways
with Software-
defined Radio

Fig. 1. Various sensors communicate with powerful SDR-based gateways.

The MSK-based receiver tailored for IEEE 802.15.4 was
first presented in [18]. A GNU radio implementation was
provided in [19] and later refined in [20], [21]. GNU radio
implementations are open source and hence valuable to users
and developers. Indeed, the implementation in [20], [21] has
been popular in the community and has led to numerous
follow-on works, e.g., [22]–[26]. Specifically, dynamic spec-
trum access has been explored based on 802.15.4 networks
in [22]. A new synchronization scheme without preamble
symbols has been developed in [23]. A physical layer SDR
testbed is implemented in [24] to allow rapid prototyping of
wireless sensor networks. An efficient error packet recovery is
presented in [25] based on error characteristic of adjacent data
symbols. Using the commodity SDR hardware and an open-
source software testbed, characterization of ZigBee devices
from different manufactures has been demonstrated in [26].

C. Contributions of This work

In this work, we introduce a novel coherent receiver for
the IEEE 802.15.4 OQPSK physical layer and implement it
in the GNU radio framework. The proposed receiver has three
stages. In the first stage, packet detection is carried out in the
presence of an unknown CFO based on the specific preamble
in IEEE 802.15.4. In the second stage, CFO is estimated and
symbol timing is refined. In the third stage, a linear decision-
directed equalizer is adopted for symbol detection, which
effectively tracks residual frequency variations and equalizes
the multipath channel.

The proposed receiver is distinct from all the OQPSK
receivers discussed in Section I-A. In particular, no existing
receivers have adopted the presented triggering mechanism
in the presence of unknown CFO and the linear equalizer
approach to track the residual frequency change and mitigate
the channel time-dispersion. In contrast to the MSK-based
GNU Radio receivers discussed in Section I-B, this work
presents the first GNU Radio implementation of an OQPSK-
based receiver. Simulation results show that the proposed
receiver achieves a 11 dB performance improvement over
the existing GNU radio receiver [20], [21], and maintains a
6 dB gain after we apply modifications to the MSK-based
receiver to enhance its performance. A field test in an indoor
environment verifies that the proposed receiver maintains large

performance gains over both the existing GNU radio receiver
and the hardware CC2652 receiver from Texas Instruments.

The excellent performance of our novel GNU Radio re-
ceiver is achieved at the expense of receiver complexity. The
proposed receiver would not be preferred for a low-cost or
low-power receiver. However, it is appealing for application
scenarios as shown in Fig. 1, where wireless nodes (including
both sensors and actuators) must operate with ultra-low power
consumption and may come from different manufacturers
while the gateways can be more powerful and can be imple-
mented via SDR [27]–[29]. Compared with existing gateways
deployed in the field with low-cost receivers, the proposed
receiver can significantly increase the communication range
for the uplink transmission from the wireless nodes to the
gateways. This increased communication range will simplify
the network topology design, require a smaller number of
relay nodes deployed in the field, and reduce the deployment
and maintenance costs of the system. For the transmissions
from the gateway to the wireless nodes, the gateway is often
connected to the backbone network and not energy constrained
and can therefore offer a high-power transmission to the low-
power receiver nodes.

The rest of this paper is organized as follows. Section II
reviews the transmitter design, and Section III develops a
coherent receiver. Section IV presents the GNU radio im-
plementation, with its simulated performance demonstrated in
Section V and field test results collected in Section VI. Section
VII presents the conclusions.

Notation: Boldface lower case letters stand for row vectors
and upper case letters stand for matrices. Symbol | · | stands
for the absolute value, ‖ · ‖ for the 2-norm of a vector, and
(·)H for the Hermitian transpose of a vector or matrix. For
two vectors a and b, the correlation coefficient is defined as

< a,b > =
|abH |
‖a‖ · ‖b‖

. (1)

II. IEEE 802.15.4 OQPSK PHY

Consider the popular OQPSK physical layer in the IEEE
802.15.4 standard. The packet structure is shown in Fig. 2.
Each packet consists of a preamble, a header, and a payload
[1]. The preamble contains 4 bytes of zeros followed by a
start of frame delimiter, 0xA7. A one-byte packet header gives
the number of bytes contained in the payload of the packet.
One bit in the header is reserved so that the maximum packet
payload length is 127 bytes.

All bytes in the packet are represented with the most
significant bit on the right. Each byte is split into two 4-bit
symbols, and each 4-bit symbol is mapped to one of the 16
nearly orthogonal 32-chip sequences given in Fig. I. Even-
indexed chips are modulated onto the data sequence In on
the in-phase carrier and odd-indexed chips are modulated to
the data sequence Qn on the quadrature-phase carrier with the
mapping 0 → −1 and 1 → 1. Let Tc denote the chip period
and g(t) denote the half-sine pulse

g(t) = sin

(
πt

2Tc

)
, 0 ≤ t ≤ 2Tc. (2)

IEEE INTERNET OF THINGS JOURNAL (REVISED) 3

0x00 0x00 0x00 0x00 0xA7 LEN #1 #LEN

Sync Header Length Payload in bytes

Fig. 2. Packet structure

TABLE I
THE 32 CHIP PSEUDORANDOM QUASI-ORTHOGONAL SEQUENCES FOR THE

OQPSK PHYSICAL LAYER [1].

Data symbol Chip values {c0c1 · · · c30c31}
0 11011001110000110101001000101110
1 11101101100111000011010100100010
2 00101110110110011100001101010010
3 00100010111011011001110000110101
4 01010010001011101101100111000011
5 00110101001000101110110110011100
6 11000011010100100010111011011001
7 10011100001101010010001011101101
8 10001100100101100000011101111011
9 10111000110010010110000001110111
10 01111011100011001001011000000111
11 01110111101110001100100101100000
12 00000111011110111000110010010110
13 01100000011101111011100011001001
14 10010110000001110111101110001100
15 11001001011000000111011110111000

The baseband OQPSK signal is

s(t) =
∑
n

Ing(t− 2nTc) + j
∑
n

Qng(t− 2nTc − Tc), (3)

where the quadrature phase signal is delayed by one chip
period.

In an SDR implementation, the data samples from s(t) are
passed from the computer to the SDR device. The baseband
waveforms are converted to passband via the SDR unit as

spb(t) = Re{s(t)ej2πfc,txt}, (4)

where fc,tx is the carrier frequency at the transmitter. The chip
duration is Tc = 0.5 µs, from which we can infer the symbol
rate (1/Tc)/32 = 62.5 kilo-symbols/s and the data rate of the
OQPSK PHY is 62.5× 4 = 250 kb/s.

III. COHERENT RECEIVER DESIGN

The received passband waveform xpb(t) is converted to the
baseband as

x(t) = LPF{xpb(t)e−j2πfc,rxt}, (5)

where fc,rx is the carrier frequency at the receiver. Due
to imperfect oscillators, there exists a non-negligible carrier
frequency offset (CFO)

ε = fc,tx − fc,rx. (6)

If multipath dispersion is explicitly modelled, the channel
input-output at the baseband can be represented as:

x(t) = ej2πεt
∑
l

hls(t− τl) + w(t), (7)

where τl is the delay and hl is the amplitude of the lth path,
and w(t) is additive white Gaussian noise (AWGN).

0 0 0 0 0 0 0 0 7 a …

𝑛𝑛 − 𝑁𝑛 − 7𝑁

CFO estimation

𝐱[𝑛 − 2𝑁]

𝐱[𝑛 − 3𝑁]

…index

Fig. 3. Illustration of the receiver template and index.

Stage 1:

Stage 2:

Stage 3: … 0xA7 LEN #1 # LEN

𝑛ො

𝑛 𝑛ଵ

𝑇[𝑛]

ρଵ[𝑛]

Fig. 4. Sample index used in three stages of receiver processing.

The sampling rate fs is set as 4 MHz in this paper. The
sampling interval is ts = 1/fs, and the sampled sequence is

x[n] = x(t)|t=nts . (8)

These samples are passed from an SDR unit to the computer
for further processing.

We next present a coherent receiver to decode the data from
the discrete samples. Reception and decoding of a transmis-
sion require detection of the packet, carrier frequency offset
compensation, timing synchronization, and compensation for
channel effects. For convenience, let us define the templates
corresponding to 0, 7, and a symbols as

s0, s7, sa. (9)

Further, define two templates corresponding to the 0x00 and
0xA7 bytes as:

d00 =
[
s0, s0

]
, dA7 =

[
s7, sa

]
. (10)

Note that s7 is in front of sa due to the format of the most
significant bits on the right. With a sampling rate of 4 MHz,
templates s0, s7, sa have N = 64 samples while templates
d00 and dA7 have M = 2N = 128 samples.

The following subsections describe each of the three stages
of our coherent receiver, with useful illustrations given in
Fig. 3 and Fig. 4.

A. First Stage: Triggering

To trigger the receiver processing in the presence of un-
known CFO, we adopt a set of parallel branches where each
branch has been compensated by a fixed CFO value. On the
ith branch, the CFO compensation is applied to obtain

yi[n] = x[n]e−j2πεints , (11)

where εi is the CFO value on the ith branch. At each sample
index n, define a length-N vector

yi[n] =
[
yi[n−N + 1], . . . , yi[n]

]
. (12)

IEEE INTERNET OF THINGS JOURNAL (REVISED) 4

-20 -15 -10 -5 0 5 10 15 20

CFO mismatch [kHz]

0.4

0.5

0.6

0.7

0.8

0.9

1
C

or
re

la
tio

n
co

ef
fic

ie
nt

Symbol-length template
Byte-length template

Fig. 5. Correlation height in the presence of CFO mismatch.

For each n, three correlation outputs are computed as

ρ0[n] = < yi[n], s0 >, (13)

ρ7[n] = < yi[n], s7 >, (14)

ρa[n] = < yi[n], sa > . (15)

We choose correlation at the symbol level of length N rather
than at the byte level of length M = 2N because the CFO
mismatch leads to a reduced correlation peak. As shown in
Fig. 5, the symbol level correlation is more robust to CFO
mismatch than the byte level correlation. A 16-kHz CFO
mismatch reduces the correlation peak from 1 to 0.9 using
the symbol level correlation.

Following the pattern illustrated in Fig. 3, a trigger signal
on the ith branch is defined as

Ti[n] = (16)
7∏
i=2

(
ρ0[n−iN] ≥ Γ1

)(
ρ7[n−N] ≥ Γ1

)(
ρa[n] ≥ Γ1

)
,

where Γ1 is a threshold to be set. Combining the output from
P branches, the overall trigger signal as:

T [n] = T1[n]
∣∣ T2[n]

∣∣ · · · ∣∣ TP [n], (17)

where | stands for the OR operation. When T [n] = 0, there
is no follow-on processing. The second stage processing is
activated during each segment where T [n] = 1.

B. Second Stage: Synchronization and Packet Detection

Second-stage processing is performed within each data
segment where T [n] = 1. For one segment, denote the starting
index as n0 and the ending index as n1, as shown in Fig. 4.
The following tasks are carried out sequentially.

1) CFO estimation: CFO estimation is done using the
samples indicated in Fig. 3 by leveraging the last three 0x00
bytes in the preamble, where the first 0x00 byte is not used
in order to avoid problems caused by the transient effects of
initiating a transmission in the hardware.

The overall CFO has fractional and integer CFO compo-
nents as

ε = εf + ν∆, (18)

where ν is an integer, ∆ is a constant, and εf is the fractional
CFO in the range of (−∆/2,∆/2). Define a length-5N vector
x[n] at time n as

x[n] =
[
x[n− 5N + 1], . . . , x[n]

]
. (19)

We estimate the fractional CFO via

ε̂f =
∠
(
x[n0 − 2N]xH [n0 − 3N]

)
2πNts

, (20)

where the operation ∠(·) evaluates the angle of a complex
number with units in radians. Since the output of ∠(·) is
limited to (−π, π), and Nts = 16 µs, the fractional CFO ε̂f is
limited in the range of (−31.25, 31.25) kHz with the constant
∆ = 62.5 kHz.

We resolve the integer ν from the set {−I, . . . , I} with
2I+1 candidate values. For each ν, define a CFO-compensated
sequence

ỹν [n] = x[n]e−j2π(ε̂f+ν∆)nts . (21)

Further, collect the samples into a length-M vector as

ỹν [n0] =
[
ỹν [n0 −M + 1], . . . , ỹν [n0]

]
. (22)

The integer CFO estimate is found by

ν̂ = arg max
ν=−I,...,I

< ỹν [n0],dA7 > . (23)

The overall CFO is estimated by

ε̂ = ε̂f + ν̂∆. (24)

The estimate ε̂ falls in the range of

(−31.25− 62.5I,+31.25 + 62.5I) kHz. (25)

We set I = 2 in the receiver implementation.

2) Fine timing: Fine timing is carried out based on the CFO
compensated samples

ỹ[n] = e−j2πε̂ntsx[n]. (26)

At each index n, define a vector

ỹ[n] = [ỹ[n−M + 1], . . . , ỹ[n]]. (27)

A correlation with the 0xA7 template leads to

ρ̃1[n] = < ỹ[n],dA7 > . (28)

During each segment where T [n] = 1, the best sample index
for the last sample of the 0xA7 byte is estimated as:

n̂A7 = arg max
n0≤n≤n1

ρ̃1[n]. (29)

IEEE INTERNET OF THINGS JOURNAL (REVISED) 5

3) Packet detection: To reduce the probability of false
alarms, we further verify that the bytes preceding 0xA7 are
indeed 0x00. Define correlation outputs as

ρ̃0[n] = < ỹ[n],d00 >, (30)

where ỹ[n] is defined in (27). The packet detection variable
is determined as:

D =
(
ρ̃1[n̂A7] ≥ Γ2

) 6∏
i=2

(
ρ̃0[n̂A7−iN] ≥ Γ2

)
, (31)

where Γ2 is a pre-defined threshold.
At each instance when D = 1, a packet arrival is declared,

and the third-stage processing is activated. The timing offset
n̂A7 and the CFO estimate ε̂ are passed to the third stage.

4) Link Quality Indicator: Per detected packet, the received
signal strength indicator (RSSI) is the energy of the received
samples corresponding to the three 0x00 bytes as:

E =
1

6N

n̂A7−2N∑
n=n̂A7−8N+1

|x[n]|2. (32)

The link quality indicator (LQI) can be evaluated by an
estimate on the signal to noise ratio (SNR) as follows. Define

ζ = < x[n̂A7 − 3N],x[n̂A7 − 2N] >, (33)

where x[n] is defined in (19). The expected value of the
correlation is ζ = SNR/(1 + SNR), and hence the SNR can
be estimated as:

SNR =
ζ

1− ζ
. (34)

C. Third Stage: Data Detection

With the correct timing and the estimated CFO, we obtain
the compensated data sequence as

r[n] = e−j2πε̂ntsx[n+ n̂A7], n = 1, 2, ... (35)

We adopt a length-K linear equalizer for channel equalization
as detailed in [30]. Corresponding to the lth symbol to be
detected, the equalizer coefficients are collected into a vector
of K = K1 +K2 + 1 taps as

f [l] =
[
f [l;−K1], ..., f [l; 0], ...f [l;K2]

]
. (36)

We will rely on decision-directed equalization. Let f̂ [l− 1] be
the equalizer computed based on the (l − 1)-th symbol. For
the l-th symbol, the equalizer output is:

ẑ[l] = f̂ [l−1]R[l], (37)

where
z[l] = [z[lN −N + 1], · · · , z[lN]], (38)

R[l] =

r[lN −N + 1−K1] . . . r[lN −K1]

...
...

r[lN −N + 1] . . . r[lN]
...

...
r[lN −N + 1 +K2] . . . r[lN +K2]

 . (39)

The equalized sequence is used to detect the symbol through
the maximum-correlation criterion as:

ŝ[l] = arg max
s

Re{ẑ[l]sH}, (40)

where s is the data sequence corresponding to the 16 possible
chip sequences in Table I.

Assuming that the decoded symbol ŝ[l] is correct, the
equalizer at the lth symbol is updated as:

f̂ [l] = ŝ[l]RH [l]([R[l]RH [l])−1. (41)

For initialization, f̂ [0] is computed based on the 0xA7 byte
in the preamble. The equalizer update and the data detection
order is:

f̂ [0]→ ŝ[1]→ f̂ [1]→ ŝ[2]→ · · · (42)

Typically, the decision directed approach is susceptible to
error propagation where one incorrect decision will impact the
detection of later symbols. However, a single symbol error
means that the whole packet is in error, and hence the error
propagation does not negatively affect the packet delivery
ratio.

A basic symbol-by-symbol update is presented here for
convenience. Alternatively, one can update the equalizer every
several symbols. For noise suppression, one can update the
equalizer by stacking several symbols together. One conve-
nient variation is to update the equalizer byte-by-byte, where
each byte contains two symbols.

IV. GNU RADIO IMPLEMENTATION

The GNU Radio IEEE 802.15.4 testbed in [20], [21] im-
plements the communication stack from the physical layer up
to the network layer, and allows the application layer to be
attached easily. This implementation is included in the GNU
Radio 3.8 release and is popular in the GNU Radio community.
This paper only focuses on the receiver portion of the OQPSK
physical layer, and aims to improve the error performance.

A. Enhancing the MSK-based receiver [19]–[21]

Fig. 6 shows the flowgraph of the MSK-based receiver
[20], [21] in gnuradio-companion (GRC). There are four key
modules.

• The Quadrature Demod module takes the phase dif-
ference of consecutive samples ∠(x∗[n−1]x[n]), which is
an estimate of the instantaneous frequency of the received
signal.

• The Single Pole IIR Filter module tracks the
DC bias from the frequency estimates due to the carrier
frequency shift. The DC bias is subtracted from the
frequency estimates.

• The Clock Recovery MM module implements the
Müller and Mueller timing recovery algorithm [31] and
outputs a recovered chip sequence.

• The custom-made Packet Sink module performs
frame synchronization and data detection, and outputs the
decoded packet.

We recommend to add two modules to improve the perfor-
mance of the MSK-based receiver.

IEEE INTERNET OF THINGS JOURNAL (REVISED) 6

Fig. 6. The current MSK-based receiver in [21].

Fig. 7. The proposed enhancement for the MSK-based receiver.

Fig. 8. The flowgraph of the proposed coherent OQPSK receiver.

• The Decimating FIR Filter module implements
a matched filtering (MF) operation on the raw frequency
estimates, with two filter taps (1/2, 1/2).

• The Low Pass Filter (LPF) module aims to reduce
the noise as much as possible before taking the phase
difference of the incoming samples. The sampling rate
for the GNU Radio implementation is 4 MHz, with the
USRP baseband bandwidth set at 2 MHz. As the null-to-
null frequency band of the incoming signal is (−1.5, 1.5)
MHz [9], we set the cutoff frequency at 1.5 MHz with a
transition band of 0.1 MHz.

As we shall see in Section V-A, the MF module will bring
about 4 to 5 dB performance gain while the LPF module will
bring additional 1 dB performance improvement.

B. The Proposed Coherent receiver

The coherent receiver described in Section III has been
implemented in the GNU Radio framework and its flowgraph
is shown in Fig. 8. The code for the blocks can be found
in the GitHub repository at [32]. There are six custom-made
modules.

• The Divider module outputs the incoming complex
data samples x[n] and the squared magnitudes |x[n]|2.

• The Power Step module computes the power sum∑N
i=1 |x[n − i]|2, which is needed by all correlation

operations in other modules.
• The Pre_CFO_Fix module outputs a complex sequence

after a pre-fixed CFO compensation. To speed up the
processing, the pre-CFO value is chosen so that it divides
the sampling rate fs, i.e., εi = fs/Q for an integer Q.
This way, ej2πεints = ej2πn/Q repeats itself after Q
samples and a finite-size look-up table can be used to

IEEE INTERNET OF THINGS JOURNAL (REVISED) 7

store the values. Also, the pre-CFO values εi and −εi
are paired so that e−j2πεits are directly obtained from
ej2πεits by conjugation.

• The Trigger module implements the triggering oper-
ation described in Section III-A and outputs Ti[n] in
(16). For the correlation operations, we downsample the
correlation template and the received samples by two. The
downsampled templates d0,d7,da have values of only
±1,±i, so no actual multiplication needs to be carried
out when evaluating the inner products involved.

• The Synchronization module implements the syn-
chronization and packet detection operation described in
Section III-B, and outputs the timing and CFO estimates
(n̂A7, ε̂). The received samples are downsampled by two
for the correlation operation in (28) and downsampled by
4 for the CFO estimation in (20).

• The Decode module implements the data detection mod-
ule in Section III-C and outputs the decoded data packet.
We have chosen the byte-by-byte update for the data
demodulation. With simulations, we confirmed that the
performance of the symbol-by-symbol update is nearly
the same as the byte-by-byte update.

The parameters that can be customized by the users include:
(a) the number of correlation branches; (b) the CFO values
on the branches; (c) the detection threshold Γ1 in the trigger
module; and (d) the detection threshold Γ2 in the synchroniza-
tion module. Four correlation branches are used in Fig. 8 and
hence two Pre_CFO_Fix and four Trigger modules are
shown.

C. Computational Requirements

The computational requirements of different modules of the
proposed receiver are analyzed below.

• The Power Step module requires two real multipli-
cations and N real additions per incoming data sam-
ple. The Pre_CFO_fix module requires two complex
multiplications per sample. The Trigger module has
no complex multiplications in the correlators as the
downsampled templates have only ±1 values, but has
N/2 complex additions and two real divisions. With
P = 4 branches, the first stage of the receiver involves 4
complex multiplications, 2 real multiplications, 2P = 8
real divisions, and PN/2 = 128 complex additions per
incoming data sample.

• The Synchronization module is run once per de-
tected packet. CFO compensation in (26) over 5 bytes
in the preamble requires 5N = 320 complex multipli-
cations. Fine timing in (29) is typically accomplished
within four samples. The operations in (29) and (30) have
no more than 4 + 5 = 9 byte-level correlations, which
amounts to 2 × 9N/2 = 576 complex additions but no
complex multiplications. The synchronization complexity
is small relative to other modules as it occurs only once
per data packet.

• The Decode module is run on the detected packet. Let
us only track the number of complex multiplications here.
The matrix inversion in (41) has complexity on the order

of O(K3), and is counted to have 255 complex multipli-
cations in our current implementation. For each update
in the byte-by-byte receiver, the numbers of complex
multiplications corresponding to (35), (37), (40), (41)
are 2N , 2KN , 2 · 16 · N , 2NK2 + 255 + 2NK + K2,
respectively. With N = 64 and K = 4, there are a total
of 5519 complex multiplications per byte update, which
correspond to 43 complex multiplications per incoming
data sample.

The MSK-based receiver has much lower complexity. The
Quadrature Demod module has one complex multiplica-
tion per sample. The Clock Recovery MM runs on real
samples and has 8 real multiplications per sample using the
default 8-tap Minimum Mean Squared Error (MMSE) inter-
polator. The Clock Recovery MM outputs chip sequences
at half the sampling rate. In the Packet Sink module,
frame synchronization with 0xA7 uses 64 bit-level additions
per chip. Once 0xA7 is found, the despreading operation runs
16 correlators with each correlator having 32 chips. To decode
one byte of data, a total of 2 ·16 ·32 = 1024 bit-level additions
are needed, corresponding to 1024/128 = 8 bit-level additions
per incoming data sample.

To obtain an intuitive understanding, we put three receivers
in one flowgraph and feed them with consecutive 30-byte
data packets with 1 ms inter-packet separation. We access
the Performance Counters, in particular the average
clock cycles in call to the modules, through the use of
ControlPort in the GNU Radio [33]. Based on the mea-
surements, we infer that the enhanced MSK-based receiver
requires approximately 2.7 times clock cycles relative to the
original MSK-based receiver, which reduces to 1.4 times if the
LPF is dropped (alternatively, the generic LPF module could
be replaced by a custom-made module for speedup). On the
other hand, the proposed receiver requires approximately 31
times clock cycles than the original MSK-based receiver. Note
that the proposed receiver has not yet been optimized and
a careful optimization could lead to multi-fold speedup. For
example, the implementation of an IEEE 802.11 transceiver in
[34] has been accelerated in [35] by a factor between 2× and
10× depending on the modulation and code scheme used.

V. SIMULATED PERFORMANCE

We set the following parameters for the proposed receiver
uploaded in [32]. There are a total of P = 4 branches with pre-
fixed CFO values ± fs

250 = ±16 kHz,± fs
83 = ±48.2 kHz. The

detection thresholds are set as Γ2 = 0.3 and Γ1 = 0.8Γ2 =
0.24. In Section V-A, we use the packet delivery ratio (PDR)
as the performance metric to compare the coherent receiver
and the MSK-based receivers. Other performance metrics are
used to evaluate the coherent receiver in Section V-B.

A. PDR Performance of Different Receivers

Figs. 9 and 10 show the receiver performance for packets of
30 and 120 bytes in the presence of additive white Gaussian
noise (AWGN), where the CFO value is uniformly drawn
from the interval [−64, 64] kHz. For each SNR point, several
thousand packets are used for performance evaluation. The

IEEE INTERNET OF THINGS JOURNAL (REVISED) 8

-10 -8 -6 -4 -2 0 2 4 6 8 10

Input SNR [dB]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

D
R

Proposed, w/ LPF
Proposed, w/o LPF
MSK, w/ LPF & MF
MSK, w/ MF
Current MSK receiver

Fig. 9. PDR performance in AWGN, packet length: 30 bytes.

-10 -8 -6 -4 -2 0 2 4 6 8 10

Input SNR [dB]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

R

Proposed, w/ LPF
Proposed, w/o LPF
MSK, w/ LPF & MF
MSK, w/ MF
Current MSK receiver

Fig. 10. PDR performance in AWGN, packet length: 120 bytes.

PDR curve of the original MSK-based receiver is consistent
with that in Fig. 9 of [23], where an input SNR of 5 dB yields
a PDR of 0.5 for packets with 20 bytes. We have made the
following observations:

• For the modified MSK-based receiver, the MF module
introduces 4 to 5 dB power gain and the LPF module
introduces another 1 dB Gain.

• The coherent receiver with or without the LPF module
has similar performance. Hence, the LPF module is
bypassed in the GNU Radio package for the coherent
receiver.

For convenience, we collect the PDR curves of the proposed
receiver without LPF, the enhanced MSK receiver with both
LPF and MF, and the original MSK receiver in Fig. 11, for
packets of 30 and 120 bytes. We observe that the enhanced
MSK receiver has about 5 dB gain over the original MSK
receiver, while its performance lags behind the proposed

-10 -8 -6 -4 -2 0 2 4 6 8 10

Input SNR [dB]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

R

Proposed
Enhanced MSK
Current MSK

dashed lines: 30 bytes
solid lines: 120 bytes

5.8 dB

6.0 dB

5.5 dB

4.9 dB

Fig. 11. PDR performance in AWGN.

-10 -8 -6 -4 -2 0 2 4 6 8 10

Input SNR [dB]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

R

about 1.5 dB

about 2.7 dB

true timing provided

true timing, CFO,
and equalizer provided

Fig. 12. Comparison with two genie-aided receivers, packet length: 120 bytes.

coherent receiver by about 6 dB.
The performance gain of the proposed coherent receiver

over the MSK receiver in [21] is larger than we expected at
the beginning of this work. It is well-known that antipodal
signalling (e.g., binary phase shift keying) outperforms binary
orthogonal signalling (e.g., binary frequency shift keying) by
3 dB and coherent decoding of binary orthogonal signals
outperforms noncoherent decoding by about 1 dB. Hence, we
started the work expecting a 4 dB improvement resulting from
coherent decoding of OQPSK over non-coherent decoding
of MSK. However, there is a large spreading gain in the
IEEE 802.15.4 OQPSK physical layer. The proposed coherent
receiver first establishes carrier and time synchronization, and
the demodulator works well even when the input SNR is
well below 0 dB due to the large spreading gain. On the
other hand, the key step in the MSK-based receiver is to
take the phase difference of consecutive received samples
x[n], which enables subsequent low-complexity symbol syn-

IEEE INTERNET OF THINGS JOURNAL (REVISED) 9

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36

Threshold
2

0

2

4

6

8

10

12

14

16

18

20
N

um
be

r
of

 F
al

se
 A

la
rm

s

SNR: -9, -7, ..., 7, 9 dB

Fig. 13. Number of false alarms for data segments of 1 ms long.

chronization and data detection. Let x[n] = s[n] + w[n],
where s[n] is the signal and w[n] is the noise. The operation
∠
(
(s[n−1] + w[n−1])∗(s[n] + w[n])

)
works well only when

the signal is reasonably stronger than the noise, otherwise the
phase estimate will correspond to the noise rather than the
signal. This step operates on a per-sample basis, so it does
not benefit from the redundancy in the modulation, and hence
is one key performance bottleneck for the MSK based receiver.

In Fig. 12, we compare the proposed receiver with two
genie-aided receivers for packets of length 120 bytes. In
both genie-aided receivers, all packets are correctly detected.
The first receiver assumes perfect timing n̂A7 = nA7 but
with practical CFO estimation and data-directed equalizer
update, while the second receiver assumes perfect timing
n̂A7 = nA7, perfect CFO estimation ε̂ = ε and the optimal
equalizer f [l] = [0, 1, 0, 0] for an AWGN channel. The second
receiver corresponds to the receiver analyzed in [9], which
assumes perfect carrier and time synchronization and tests
only the demodulation performance in an AWGN channel.
Since every four bits are mapped into 64 samples, Eb/N0 is
10 log10(64/4) = 12 dB higher than the input SNR. Fig. 4 of
[9] shows that a symbol error rate (SER) of 10−4 is achieved
at Eb/N0 = 7 dB and hence SNR = −5 dB, and the
corresponding PDR is (1 − SER)120·2 = 0.98 for a 120-byte
packet. Our result in Fig. 12 is hence consistent with the union
bound and the simulated performance in Fig. 6 of [9].

From Fig. 12, we observe that the proposed receiver is about
2.7 dB away from the ideal receiver with perfect carrier and
time synchronization in an AWGN channel [9]. Out of the
2.7 dB gap, 1.5 dB is attributed to the CFO estimation and
data detection modules and 1.2 dB is attributed to the packet
detection and time synchronization modules.

B. Detection Threshold, CFO and SNR Estimation

Here we report other performance metrics for the proposed
coherent receiver: packet detection performance, CFO estima-
tion accuracy and SNR estimation.

-10 -8 -6 -4 -2 0 2 4 6 8 10

Input SNR [dB]

0

2

4

6

8

10

12

14

C
F

O
 R

M
S

E
 [k

H
z]

Full
Downsampled

Fig. 14. Accuracy of the CFO estimation.

-10 -8 -6 -4 -2 0 2 4 6 8 10

Input SNR [dB]

-10

-5

0

5

10
E

st
im

at
ed

 S
N

R
 [d

B
]

Estimated
True SNR

Fig. 15. The estimated SNR as a link quality indicator.

Packet detection has two probabilities to deal with: Prob-
ability of detection and probability of false alarms. Lower
detection thresholds can improve the probability of detection
but will increase the probability of false alarms. We choose
the constant as

Γ1 = 0.8 Γ2 (43)

and vary Γ2 between 0.2 and 0.4. It turns out that the false
alarms due to additive white Gaussian noise can be neglected
in view of the randomly generated data packets. Fig. 13
depicts the joint effect of mixing randomly generated packets
(without the preamble portion) with additive noise on the
number of false alarms processing each data segment of 1
ms (corresponding to a packet of 30 bytes). When Γ2 = 0.3
and Γ1 = 0.8Γ2 = 0.24, false alarms are negligible. We hence
recommend these threshold values for the coherent receiver.

For the correctly detected packets, the root mean-squared
error (RMSE) of the CFO estimates is shown in Fig. 14,

IEEE INTERNET OF THINGS JOURNAL (REVISED) 10

0

0.5

1

1.5

2

2.5

3

3.5
A

m
pl

itu
de

10-3

0 2 4 6 8 10 12 14 16

sample index

0

0.5

1

1.5

2

2.5

3

3.5

4

A
m

pl
itu

de

10-3

0 2 4 6 8 10 12 14 16

sample index

Fig. 16. Example channel impulse responses: Sample interval ts = 0.25 µs.

where the original data sequence could be also downsampled
by four times to speed up the processing. As the input SNR
stays above −6 dB, the RMSE is below 4 kHz. The average
values of the SNR estimates are depicted in Fig. 15 with the
standard deviation illustrated via error bars around the mean.
The average SNR agrees with the true SNR very well. The
standard deviation of the SNR estimates is about 1.5 dB at
input SNR of −5 dB and is about 0.75 dB at input SNR of 0
dB. The SNR estimate can serve as one reliable link quality
indicator, especially when averaged over several packets.

C. Emulated Performance based on Recorded Data Sets
We used USRP to record several data sets from the trans-

missions of a TI CC2650 device. The estimated CFO between
the transmitter and the receiver is about 10.5 kHz. Channel
estimates based on the least-squares fitting of the received
samples corresponding to the 0xA7 byte are plotted in Fig. 16,
and are similar to those reported in [36]. These channel plots
motivated the choice of the four-tap equalizer with K1 = 1
and K2 = 2.

Fig. 17. The TI CC2650 transmitter on a moving cart.

Fig. 18. Five receivers placed side by side: three GNU Radio receivers and
two TI CC2652 receivers.

VI. FIELD TEST

We performed a field test in an indoor environment. Fig. 17
shows a TI CC2650 transmitter [37], placed on a cart.
Fig. 18 shows the receiver setup with five receivers placed
together. One monopole antenna is connected to a divider
which provides identical RF signals to three USRP units
through wired connections. With samples from USRP devices,
three GNU Radio receivers were running: a) the proposed
coherent receiver, b) the enhanced MSK-based receiver and
c) the original MSK-based receiver. Two CC2652 receivers
from Texas Instruments [38] were placed near the monopole
antenna, one on the left and one on the right. The CC2652
receivers have their own printed-circuit board (PCB) inverted-
F antennas, whose beam patterns can be found in [39]. The
normalized receiver gains on the USRP units were set to 0.9.
To avoid interference from the WiFi, we used IEEE 802.15.4
channel 20 centered at 2.450 GHz.

The third floor of the Information Technology and Engi-
neering (ITE) building at the UConn campus, whose floor
map is shown in Fig. 19, was used for tests. At points P1,
P2, P3, the transmitter cycled the power levels from the set of
ten values {−21,−18,−15, . . . , 0, 3, 5} dBm, where 5 dBm
is the maximum power allowed by the device. Point P1 is
28 meters away and has a direct line-of-sight (LOS) path to
the receiver. P2 and P3 are 40 and 49 meters away from
the receiver, respectively. Although there are open hallways
between P2/P3 and the receiver, the transmission paths might
not be claimed as LOS paths. All receivers decoded nearly all
the packets at P1 for all power levels. Figs. 20 and 21 show
the PDR performance at P2 and P3, respectively. For each
PDR evaluation, 500 packets were sent with packet length 30
bytes. From Figs. 20 and 21, we observe that the proposed

IEEE INTERNET OF THINGS JOURNAL (REVISED) 11

Fig. 19. The floor plan with marked receiver and transmitter locations.

receiver has approximately a 6 dB gain over the enhanced
MSK-based and a 10 dB gain over the original MSK-based
receiver. These performance gains are mostly consistent with
the simulation results. The TI receivers are worse than the
MSK-based receiver and show large performance variations
between P2 and P3. However, the TI receivers and the USRP
receivers do not share the same antennas and the antenna
patterns have an influence that cannot be quantified here. In
addition, we tried to transmit packets at point P4, which is
on the other side of the hallway and has transmission paths
blocked from the receiver. At a transmit power of 5 dBm, the
proposed coherent receiver received 80% of the packets while
all other receivers received zero packets.

We further examine the SNR estimates provided by the
coherent receiver (the “debug” option in the Decode module
in Fig. 8 needs to be turned on). The average SNRs at P1-P4
are reported in Fig. 22 as a function of transmit power, and
the standard deviation is about 1.6 dB. Moving the transmitter
from P1 to P2, nearly 10 dB SNR is lost, while P2 and P3 have
almost the same SNRs. Corresponding to the transmit power
of 5 dBm, the average SNR is only −2.7 dB at P4, while
about 17 dB at P3. The SNR estimates shed light on the PDR
performance differences in Fig. 20 and 21. We underscore
that indoor propagation channels are complex and the receiver
performance is not merely a function of the transmission
distance.

VII. CONCLUSION

In this paper, we presented a coherent receiver for the IEEE
802.15.4 OQPSK physical layer and implemented it in the
GNU Radio framework. The receiver achieves a significant
improvement around 11 dB in performance over an existing
GNU radio receiver, and maintains about 6 dB gain when
the latter is suitably improved. This proposed receiver is
suitable for SDR-based high-performance gateways in IoT
applications. Our future work will include code optimization
for processing speeds and application of the proposed receiver
in IoT testbeds.

AUTHORS’ CONTRIBUTIONS

E. Faulkner and Z. Yun have contributed equally to this
work. E. Faulkner focused on algorithm development and

-20 -15 -10 -5 0 5

transmit power [dBm]

0

10

20

30

40

50

60

70

80

90

100

P
D

R

Proposed
Enhanced MSK
Current MSK
TI Sensor 1
TI Sensor 2

5.9 dBm 4.2 dBm

Fig. 20. PDR vs transmission power at P2.

-20 -15 -10 -5 0 5

transmit power [dBm]

0

10

20

30

40

50

60

70

80

90

100

P
D

R

Proposed
Enhanced MSK
Current MSK
TI Sensor 1
TI Sensor 2

5.9 dBm 3.4 dBm

Fig. 21. PDR vs transmission power at P3.

performance analysis, while Z. Yun implemented the GNU
radio receiver and led the experimental validation.

ACKNOWLEDGEMENT

The work by Z. Yun and S. Han is partially supported by
the National Science Foundation under NSF Awards CNS-
1925706 and IIP-1919229. We thank Ms. Natong Lin for
her help in assisting the experimental tests, and Kaiyuan Liu
for his help in investigating the receiver complexity. We are
grateful to Dr. Bloessl whose open-source GNU-radio receiver
in [21] has motivated this work.

REFERENCES

[1] IEEE Standard for Low-Rate Wireless Networks, IEEE Std 802.15.4-
2015 (Revision of IEEE Std 802.15.4-2011) Std., 2016.

[2] A. G. Ramonet and T. Noguchi, “IEEE 802.15.4 historical evolution
and trends,” in Prof. of 21st International Conference on Advanced
Communication Technology (ICACT), 2019, pp. 351–359.

IEEE INTERNET OF THINGS JOURNAL (REVISED) 12

-20 -15 -10 -5 0 5

transmit power [dBm]

-10

-5

0

5

10

15

20

25

30
E

st
im

at
ed

 S
N

R
 [d

B
]

Point 1

Point 2

Point 3

Point 4

Fig. 22. The estimated SNRs at P1, P2, P3, P4.

[3] L. Davoli, L. Belli, A. Cilfone, and G. Ferrari, “From Micro to Macro
IoT: Challenges and solutions in the integration of IEEE 802.15.4/802.11
and Sub-GHz technologies,” IEEE Internet of Things Journal, vol. 5,
no. 2, pp. 784–793, 2018.

[4] N. Choudhury, R. Matam, M. Mukherjee, and L. Shu, “Beacon syn-
chronization and duty-cycling in IEEE 802.15.4 cluster-tree networks:
A review,” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1765–
1788, 2018.

[5] W. Li, X. Hu, and T. Jiang, “Path loss models for IEEE 802.15.4 vehicle-
to-infrastructure communications in rural areas,” IEEE Internet of Things
Journal, vol. 5, no. 5, pp. 3865–3875, 2018.

[6] M. Wu, X. Hu, R. Zhang, and L. Yang, “Collision recognition in
multihop IEEE 802.15.4-compliant wireless sensor networks,” IEEE
Internet of Things Journal, vol. 6, no. 5, pp. 8542–8552, 2019.

[7] G. Chen, X. Cao, L. Liu, C. Sun, and Y. Cheng, “Joint scheduling
and channel allocation for end-to-end delay minimization in industrial
WirelessHART networks,” IEEE Internet of Things Journal, vol. 6, no. 2,
pp. 2829–2842, 2019.

[8] J. G. Proakis, Digital Communications. McGraw-Hill,4th edition, 2001.
[9] P. Gupta and S. G. Wilson, “IEEE 802.15.4 PHY analysis: Power spec-

trum and error performance,” in Prof. of Annual IEEE India Conference,
vol. 1, 2008, pp. 171–176.

[10] D. Park, C. S. Park, and K. Lee, “Simple design of detector in the
presence of frequency offset for IEEE 802.15.4 LR-WPANs,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 4,
pp. 330–334, 2009.

[11] S. Dai, H. Qian, K. Kang, and W. Xiang, “A robust demodulator
for OQPSK-DSSS system,” Circuits, Systems, and Signal Processing,
vol. 34, pp. 231–247, 01 2014.

[12] U. Pešović, S. Durašević, and P. Planinšiš, “Carrier synchronization al-
gorithm for software defined radio,” in Proc. of 25th Telecommunication
Forum (TELFOR), 2017, pp. 1–4.

[13] K. Gorantla and V. V. Mani, “Synchronization in IEEE 802.15.4 Zigbee
transceiver using Matlab Simulink,” in Proc. International Conference
on Advances in Computing, Communications and Informatics (ICACCI),
2015, pp. 144–148.

[14] S. Yin, J. Cui, A. Luo, L. Liu, and S. Wei, “A highly efficient baseband
transceiver for IEEE 802.15.4 LR-WPAN systems,” in Prof. of 9th IEEE
International Conference on ASIC, 2011, pp. 224–227.

[15] U. Pešović, D. Gliech, P. Planinšič, Z. Stamenković, and S. Randić,
“Implementation of coherent IEEE 802.15.4 receiver on software defined
radio platform,” in Prof. of 23rd Telecommunications Forum Telfor
(TELFOR), 2015, pp. 224–227.

[16] R. M. Koteng, “Evaluation of SDR-implementation of IEEE 802.15.4
physical layer,” Master’s thesis, Norwegian University of Science and
Technology, 2006.

[17] A. Z. Mohammed, A. K. Nain, J. Bandaru, A. Kumar, D. S. Reddy,
and R. Pachamuthu, “A residual phase noise compensation method for
IEEE 802.15.4 compliant dual-mode receiver for diverse low power IoT

applications,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 3437–
3447, 2019.

[18] N. Dehaese, S. Bourdel, H. Barthelemy, and G. Bas, “Simple demodula-
tor for 802.15.4 low-cost receivers,” in Prof. of IEEE Radio and Wireless
Symposium, 2006, pp. 315–318.

[19] T. Schmid, “GNU Radio 802.15.4 En- and Decoding,” University of
California Los Angeles, Tech. Rep., 2006.

[20] B. Bloessl, C. Leitner, F. Dressler, and C. Sommer, “A GNU Radio-
based IEEE 802.15.4 Testbed,” in 12. GI/ITG KuVS Fachgespräch
Drahtlose Sensornetze (FGSN 2013), Cottbus, Germany, September
2013, pp. 37–40.

[21] B. Bloessl, “Wirless Measurement and Experimentation (WIME),”
https://www.wime-project.net/.

[22] R. Zitouni, L. George, and Y. Abouda, “A Dynamic Spectrum Access
on SDR for IEEE 802.15.4e networks,” in Proceedings of Wireless
Innovation Forum, March 2015.

[23] B. Bloessl and F. Dressler, “msync: Physical layer frame synchronization
without preamble symbols,” IEEE Transactions on Mobile Computing,
vol. 17, pp. 2321–2333, 2018.

[24] H. K. Benitez, C. H. Cabuso, M. T. De Leon, J. R. Hizon, and M. Ros-
ales, “Implementation of a physical layer wireless sensor network testbed
using software defined radios,” in Prof. of International Symposium on
Multimedia and Communication Technology (ISMAC), 2019, pp. 1–6.

[25] J. Gu, C. Chen, S. Zhu, and J. He, “Efficient Error Packet Recovery
without Redundant Bytes for IEEE 802.15.4 Protocol,” in 3rd Interna-
tional Symposium on Autonomous Systems (ISAS). Shanghai, China:
IEEE, May 2019, pp. 418–423.

[26] S. Gvozdenovic, J. K. Becker, and D. Starobinski, “SDR-based PHY
Characterization of Zigbee Devices,” in 63rd International Midwest
Symposium on Circuits and Systems (MWSCAS). Springfield, MA:
IEEE, August 2020, pp. 129–132.

[27] S. Wang, Y. Li, C. Ming, and Z. Zhang, “Building Gateway Intercon-
nected Heterogeneous ZigBee and WiFi Network Based on Software
Defined Radio,” in International Conference on Communications and
Networking in China (ChinaCom). Shanghai, China: Springer, Novem-
ber 2019, pp. 445–456.

[28] C. Gavril, C.-Z. Kertesz, M. Alexandru, and V. Popescu, “SDR-based
Gateway for IoT and M2M applications,” in Prof. of Baltic URSI
Symposium (URSI). Poznan, Poland: IEEE, May 2018, pp. 71–74.

[29] H. Hellstrom, M. Luvisotto, R. Jansson, and Z. Pang, “Software-defined
wireless communication for industrial control: A realistic approach,”
IEEE Industrial Electronics Magazine, vol. 13, no. 4, pp. 31–37, 2019.

[30] R. C. Johnson Jr, W. A. Sethares, and A. G. Klein, Software Receiver
Design: Build Your Own Digital Communication System in Five Easy
Steps. Cambridge University Press, 1st edition, 2011.

[31] K. Mueller and M. Müller, “Timing recovery in digital synchronous data
receivers,” IEEE Transactions on Communications, vol. 24, no. 5, pp.
516–531, 1976.

[32] https://github.com/cloud9477/gr-advoqpsk.
[33] T. Rondeau, T. O’Shea, and N. Goergen, “Inspecting GNU Radio

Applications with ControlPort and Performance Counters,” in Proc.
of 2nd ACM SIGCOMM Workshop of Software Radio Implementation
Forum, Hong Kong, China, August 2013, pp. 65–70.

[34] B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “An IEEE
802.11a/g/p OFDM Receiver for GNU Radio,” in Proc. of 2nd ACM
SIGCOMM Workshop of Software Radio Implementation Forum, Hong
Kong, China, August 2013, pp. 9–16.

[35] G. Arcos, R. Ferreri, M. Richart, P. Ezzatti, and E. Grampı́n, “Acceler-
ating an IEEE 802.11 a/g/p Transceiver in GNU Radio,” in Proc. of 9th
Latin America Networking Conference (LANC’16), Valparaı́so, Chile,
October 2016, pp. 13–19.

[36] S. Ayvaşik, M. Gürsu, and W. Kellerer, “Veni Vidi Dixi: reliable
wireless communication with depth images,” in Proceedings of the 15th
International Conference on Emerging Networking Experiments And
Technologies, Orlando, FL, USA, December 912, 2019.

[37] Texas Instruments, “SimpleLink 32-bit Arm Cortex-M3 multiprotocol
2.4 GHz wireless MCU,” https://www.ti.com/product/CC2650.

[38] ——, “SimpleLink multi-standard CC26x2R wireless MCU LaunchPad
development kit,” https://www.ti.com/tool/LAUNCHXL-CC26X2R1.

[39] ——, “Application Report: 2.4-GHz Inverted F Antenna,”
https://www.ti.com/lit/an/swru120d/swru120d.pdf.

