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Abstract: In this chapter, we review three different 802.11-based WiFi

solutions that address the urgent need for a real-time high-speed wire-

less communication protocol to support time- and mission-critical wireless

sensing and control systems. First, an RT-WiFi protocol design based on

a time division multiple access (TDMA)-based data link layer scheduler

is presented to provide deterministic timing guarantee on packet delivery

by operating on top of commercial off-the-shelf (COTS) devices. Second,

a software-defined radio (SDR)-based solution called SRT-WiFi is imple-

mented on FPGA-based SDR platform, providing full-stack configurability

to align with the evolving IEEE 801.11 standard. Finally, we discuss an

ongoing effort to explore the implementation of the 802.11a/g/n/ac phys-

ical layers on the GNU Radio based SDR platforms, which includes both
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single-user (SU) and multi-user (MU) MIMO transmissions. The effective-

ness of the three solutions are validated through both real-world testbed

deployment and extensive simulation-based experiments.

Keywords: Software-defined radio, RT-WiFi, full-stack configurability, FPGA,

GNU Radio, SU/MU-MIMO

1.1. Introduction

Applying real-time wireless technologies in industrial control systems has been

gaining popularity in recent years. Pervasively deployed sensors and actua-

tors based on high-throughput wireless standards allow for increased network

throughput, improved system mobility and reduced maintenance costs. A key

step of designing a wireless control system is to choose the most appropriate

wireless protocol based on its desired control specifications. Some protocols

based on low-data-rate physical layers (PHYs), like 802.15.4, focus on real-time

packet delivery and reliable performance but are only suitable for low-speed

control applications. Comparatively, IEEE 802.11 standard (WiFi) is designed

for high-speed wireless local area networks (WLANs) [Tramarin et al., 2019].

Table 1.1 gives an overview of the evolution of IEEE 802.11 standards,

which was first released in 1997 and designed for WLAN usage as part of the

IEEE 802 family. After the first widely used version IEEE 802.11b (WiFi 1)

in 1999, the 802.11 working group (WG) released the version of IEEE 802.11a

(WiFi 2) and IEEE 802.11g (WiFi 3) supporting orthogonal frequency division

multiplexing (OFDM). From IEEE 802.11n (WiFi 4), the single-user MIMO

(SU-MIMO) is supported with multiple optional beamforming transmissions.

In IEEE 802.11ac (WiFi 5), the multi-user MIMO (MU-MIMO) is added and
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Table 1.1: An overview of 802.11 standard evolution

Protocol PHY Name
Max.Rate

[Mbit/s]
Channel bandwidth [MHz] Band [GHz] Name

802.11 1997 DSSS 2 22 2.4 (Wi-Fi 1)

802.11b 1999 HR/DSSS 11 22 2.4 (Wi-Fi 2)

802.11a 1999 OFDM 54 20 5 -

802.11g 2003 ERP-OFDM 54 20 2.4 (Wi-Fi 3)

802.11n 2009 HT-MIMO 600 20/40 2.4/5 Wi-Fi 4

802.11ac 2013 VHT-MIMO 3466.8 20/40/80/160 5 Wi-Fi 5

802.11ax 2019 HE-OFDM 10530
20/40@2.4GHz

20/40/80/160@5GHz
2.4/5 Wi-Fi 6

802.11be 2024 EHT-OFDM 46120

20/40@2.4GHz

20/40/80/160@5GHz

80/160/320@6GHz

2.4/5/6 Wi-Fi 7

the compressed channel feedback is the only method for MU-MIMO beamform-

ing. IEEE 802.11ax (WiFi 6) supports orthogonal frequency-division multiple

access (OFDMA), and the latest IEEE 802.11be standard (WiFi 7) has a max-

imum data rate of 46 Gbps.

Notably, the non-deterministic communication performance of standard

802.11 makes it incapable of mission- and safety-critical applications that re-

quire high determinism and reliability. To address this issue, a systematic solu-

tion named RT-WiFi [Wei et al., 2013, Leng et al., 2014, Wei et al., 2018] was

proposed to provide real-time data delivery for a range of wireless control sys-

tems. RT-WiFi is a TDMA-based data link layer (DLL) protocol built on IEEE

802.11 a/g PHY, providing deterministic timing guarantees for packet delivery

with a configurable sampling rate of up to 6 kHz. RT-WiFi was implemented

on AR9285, a commercial-off-the-shelf (COTS) 802.11 network interface card

(NIC). This allows running existing applications on top of RT-WiFi with mini-

mum modifications thus offering the advantage of much shortened development

periods; however, it comes with the trade-off of limited flexibility in terms of
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radio technologies. For instance, the Atheros AR9285 is limited to compatibil-

ity with IEEE 802.11a/g, whereas many real-time wireless protocols are based

on varied radio technologies and thus require different hardware platforms. It

is thus a significant challenge to develop a uniform communication platform

that integrates various real-time wireless technologies to maximize the existing

hardware investments and software development efforts.

These limitations motivate us to develop a SDR-based configurable real-

time wireless platform. This platform is programmable at both PHY and DLL

layers to meet the diverse requirements of industrial control systems, includ-

ing those with multiple operational modes. SRT-WiFi [Yun et al., 2022] is a

SDR-based solution for RT-WiFi to serve this purpose. Its design and imple-

mentation leverage an advanced SDR platform (Xilinx Zynq-7000 and Analog

Device AD9364), with radio functions programmed on an FPGA. SRT-WiFi

can operate in hard real-time because its radio functions are executed by logic

blocks in the FPGA running at oscillator-driven speeds, and thus support

the essential functions needed for high-speed real-time communications and

provide an open-source platform to accommodate the evolving IEEE 802.11

standards.

While SRT-WiFi provides real-time and reliable wireless communications

for industrial control applications, its current version only supports IEEE

802.11a/g PHYs and SISO communications. Our ultimate goal is to develop

SRT-WiFi into a full-blown SDR-based real-time wireless platform and support

newer standards of WiFi, e.g., IEEE 802.11n/ac/ax, to enable both SU/MU

MIMO and OFDMA. As the first step towards this goal, we extend SRT-WiFi

on GNU Radio, a widely used open-source SDR platform [GNU Radio Foun-

dation, 2007]. With GNU Radio and USRP, we can implement and evaluate
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Table 1.2: Pros and cons of the three solutions.

Pros Cons

RT-WiFi
[Wei et al.,
2013]

• Timing guarantee on packet
delivery

• Needs significant effort and
hardware expertise to manage
and upgrade COTS devices

• Flexible DLL configuration

• Seamless integration with ex-
isting hardware

SRT-WiFi
[Yun et al.,
2022]

• Full-stack configurability • Complexity of implementation
and long developing period

• Precise time synchronization
and real-time communication

• Only support IEEE 802.11a/g

• Efficient queue management

GR-WiFi • Support multiple standards,
including IEEE 802.11a/g/n/ac

• Not able to perform on real-
time testbed yet

the PHYs of newer 802.11 standards with a much shorter development pe-

riod when compared to developing those PHYs directly on FPGA-based SDR

platform. For simplicity of presentation, we call this GNU Radio-based imple-

mentation GR-WiFi to differentiate it from the SRT-WiFi system developed

on FPGA-based SDR platform. Once GR-WiFi is fully developed and tested

on GNU Radio, it will be ported on the FPGA-based SDR platform to make it

full-blown and support hard real-time performance. In GR-WiFi, we have suc-

cessfully implemented the PHYs of IEEE 802.11a/g/n/ac standards supporting

the Legacy OFDM (Legacy), high-throughput (HT) and very-high-throughput

(VHT) PHY formats with SISO and 2×2 SU-MIMO and MU-MIMO. Both

FPGA-based SRT-WiFi and GNU Radio-based GR-WiFi implementations,

once mature, will be made public to the wireless communities to support a

broad range of R&D activities. Table 1.2 summarizes the strengths and limi-

tations of the three solutions reviewed in this chapter.
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1.2. RT-WiFi based on IEEE 802.11a/g

An RT-WiFi network consists of three primary components: RT-WiFi stations

(STAs), which are devices equipped with 802.11-compatible hardware and the

RT-WiFi protocol stack; RT-WiFi Access Points (APs), which function as in-

termediaries to support message exchange between the network manager and

RT-WiFi STAs; and the network manager, a software module that configures

the network, coordinates communication between APs and STAs, and adjusts

the communication schedule when necessary. An RT-WiFi AP and its associ-

ated STAs are defined as a cluster. An RT-WiFi network with multiple APs

is called a multi-cluster RT-WiFi network [Leng et al., 2019] (see Fig. 1.1). In

industrial practice, the placement of the RT-WiFi APs will be done through

careful site survey, resulting in each AP and its associated STAs forming a

star topology. In a multi-cluster RT-WiFi network, each AP is managed by an

AP network manager responsible for its cluster. Also, a central network man-

ager supervises all AP network managers and coordinates packet transmissions

among different clusters. Since RT-WiFi is a TDMA-based communication pro-

tocol, the local clocks of all STAs and APs are synchronized [Wei et al., 2013].

Figure 1.1: Overview of an RT-WiFi network with three clusters.
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1.2.1. RT-WiFi Protocol Design

The RT-WiFi protocol stack is the most essential building block of the RT-

WiFi network. It enables real-time and high-speed data transmissions and cus-

tomizable DLL configurations for diverse applications. The RT-WiFi protocol

design takes into consideration the requirements of different types of control

applications, enabling control designers to choose the communication behav-

ior that fits their applications the best. At the same time, RT-WiFi design

minimizes the modification on the original WiFi protocol so that it can be

transparent to both the upper layer software stack and underlying hardware

to provide the most compatibility and usability.

The architecture of RT-WiFi protocol is shown in Fig. 1.2. At the very

bottom, RT-WiFi utilizes IEEE 802.11 PHY, which is sufficiently fast for most

wireless control systems. Control application users can easily implement the

RT-WiFi DLL on COTS IEEE 802.11 hardware to support high-speed and

real-time data transmissions. Above the IEEE 802.11 PHY layer is a TDMA-

based DLL, which is the core of the RT-WiFi protocol. Combined with the

centralized channel and time management schemes imposed by the RT-WiFi

network manager, this DLL ensures collision-free and deterministic commu-

nications. Additionally, it offers a flexible abstraction for the upper layers,

allowing seamless support for standard UDP/TCP-based applications.

The RT-WiFi DLL comprises three main components: a timer that ensures

global synchronization across all RT-WiFi nodes and initiates timing events;

a link scheduler that manages media access and executes scheduled events at

designated time points; and a flexible channel access controller that dynam-

ically configures hardware parameters to execute timing events based on the

target application’s behavior.
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Figure 1.2: System architecture of the RT-WiFi protocol.

1.2.2. Performance Evaluation

We set up a small-scale testbed with one AP and three STAs to evaluate the

performance of the RT-WiFi DLL design (see Fig. 1.3). Each device utilized

the Atheros AR9285 NIC operating on the 802.11g protocol, though they were

powered by CPUs with varying computing capabilities. In the experiments, six

pairs of UDP sockets were established between the STAs and the AP, with data

published every 4 ms for each socket with a fixed payload of 460 bytes. The

comparison results between WiFi and RT-WiFi are summarized in Table 1.3.

It shows that the average latency variation in a WiFi network is up to 90 times

greater than in an RT-WiFi network, with the maximum delay exceeding 30

times that of RT-WiFi. In contrast, RT-WiFi supports a sampling rate of up to

6 kHz, and less than 0.01% of packets have latency greater than 1 ms, meeting

the requirements of most industrial control systems [Wei et al., 2013].
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Figure 1.3: Testbed setup for RT-WiFi performance evaluation.

Table 1.3: Comparison of delay between RT-WiFi and regular WiFi networks.

Link
Max Delay(µs) Mean Delay(µs) Standard Deviation(µs)

RT-WiFi Wi-Fi RT-WiFi Wi-Fi RT-WiFi Wi-Fi
STA1 → AP 3865 100078 176 401 25.86 1491.69
STA2 → AP 4193 81499 171 348 27.62 1000.60
STA3 → AP 3861 75298 174 429 25.16 1221.72
AP → STA1 1197 78089 184 788 16.86 2861.42
AP → STA2 1342 78923 189 790 15.19 2806.56
AP → STA3 2186 77860 189 799 19.03 2855.89

1.3. SRT-WiFi based on IEEE 802.11a/g

The RT-WiFi protocol design offers several advantages, including determinis-

tic timing guarantee on packet delivery, flexible data link layer configuration,

and seamless integration with existing hardware. However, it has some limi-

tations, such as limited flexibility in terms of radio technologies and no sup-

port for frequently updated wireless protocols. To address these limitations,

SRT-WiFi [Yun et al., 2022] introduces an SDR-based configurable real-time

solution. In contrast to RT-WiFi, which relies on COTS hardware, the SDR

platform offers programmability at both the PHY and DLL levels. This flexi-

bility allows it to accommodate the needs of various industrial control systems

with multiple operational modes.
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Figure 1.4: Overview of the SRT-WiFi system architecture. It highlights the
created and modified modules in SRT-WiFi based on the Openwifi architecture.

SRT-WiFi is built upon Openwifi [Jiao et al., 2020], a SoftMAC IEEE

802.11 design compatible with the Linux MAC80211 subsystem. As shown in

Fig. 1.4, the Openwifi system has two major components: the processing system

(PS) and the programmable logic (PL). The PS handles the majority of the

MAC layer and all higher layers. The PL is an FPGA-based embedded system

responsible for the real-time portion of the MAC and PHY layers. Both PS

and PL are implemented on the Zynq-7000 SoC, which includes an FPGA for

the PL and an ARM processor for the PS. Data exchange between PL and

PS occurs through the Advanced eXtensible Interface (AXI) bus, supporting

direct memory access as well as register reading and writing. Additionally, the

PL is connected to an AD9364 radio terminal from Analog Devices for signal

transceiving.

Fig. 1.4 shows three main modules of PL on the right side: the TX interface

(TXI), the XPU (application-specific processing unit), and the RX interface

(RXI). The TXI module manages packet transmission, while the RXI module

handles packet reception. The XPU module controls channel access by using

IEEE 802.11 distributed coordination function (DCF) [IEEE 802.11 Working

Group, 2021]. Leveraging concurrent processing ability in FPGA, the radio
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terminal can operate its transmitter (TX) and receiver (RX) modules at the

same time. Besides, PL modules equipped with registers allow configurations

of operation modes and parameters.

In PS, a Linux OS is operating on an ARM processor. As the platform

adopts SoftMAC architecture, most MAC functionalities are integrated into

the Linux kernel (MAC80211 subsystem [Mur, 2011]), excluding the real-

time MAC and PHY that are being implemented in PL. Between the Linux

MAC80211 subsystem and the wireless adapter (PL), the MAC80211 driver is

in place to facilitate communication. Sub-drivers (depicted on the left side of

Fig. 1.4) ensure data communications between the MAC80211 driver and PL.

MAC80211 driver interacts with PL by calling APIs provided by sub-drivers.

Additionally, TX and RX drivers manage the transmission and reception of

data packets between the PS and PL, respectively, using DMA.

Building on top of Openwifi, SRT-WiFi aims to achieve several key ob-

jectives: enabling precise network-wide time synchronization and facilitating

multi-cluster real-time communications with effective rate adaptation at run

time. The design details of the modified PL and PS components of SRT-WiFi

are presented below.

1.3.1. Programmable Logic (PL) in SRT-WiFi

The PL component of SRT-WiFi is designed to 1) achieve real-time transmis-

sions with high-precision time synchronization, 2) enhance queue management

efficiency, and 3) measure precise link reception SNR as a reference for rate

adaptation. We now describe how to achieve these functions in SRT-WiFi PL.
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Figure 1.5: The timing diagram of an example superframe in multi-cluster
SRT-WiFi with 127 time slots.

1.3.1.1. TDMA Block Design in SRT-WiFi PL

To improve real-time performance, a TDMA block is designed in XPU to sup-

plement the CSMA block. SRT-WiFi can seamlessly switch between TDMA

and CSMA modes during runtime.

The TDMA mode in SRT-WiFi is designed to transmit and receive frames

at designated times, coordinating communication between APs and STAs to

prevent collisions. With this objective in mind, all transmissions follow a sched-

ule that includes the transmitting times of the links with a specified time

duration called superframe. A superframe consists of consecutive time slots,

with each slot specifying the transmission state(TX, RX, or Idle) and the cor-

responding sender or receiver. At run time, the superframe is continuously

generated to schedule the transmissions. Each time slot of the superframe has

an atomic slot as the basic time unit. The length of time slots varies along

with the rate to support rate adaptation, as a lower rate requires more time,

namely more atomic slots, to transmit the same packet. In SRT-WiFi, super-

frame lengths, time slots, and atomic slots are fully customized. In most cases,

application’s requirements decide superframe length and selected data rate in

the PHY link configure time slot and atomic slot lengths.

Fig. 1.5 illustrates a superframe example in an SRT-WiFi network. The

superframe has 127 atomic slots, with Slot0 and Slot1 allocated to AP1 and

AP2 for sending beacons. Shared slots shown in Slot2 and Slot3 are available for
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any links that are used for the association process. The remaining atomic slots

are either used for specific link communications or left idle. In the example,

each link has the same MTU but operates at different rates, requiring varied

time slot lengths and different numbers of atomic slots to transmit.

In the TDMA block, a register page is implemented for the TDMA driver

can store and maintain schedule information. A scheduler timer located in the

TDMA block will trigger the transmissions based on schedule. Each time slot

attached a link assignment at the beginning will be retrieved by the TDMA

block. The TXI module, which has the queue ready for each link, will send a

frame to the next module as soon as it detects a loaded queue. The OFDM

TX module then processes the frame by modulating the bit stream into the

digital signal stream and handing it over to the DAC interface for final signal

emission through the radio terminal’s antenna

1.3.1.2. TDMA Time Synchronization Design

SRT-WiFi has an accurate time synchronization feature among the devices in

the network. The SRT-WiFi network contains multiple clusters with an AP

and several STAs, which may share the same channel. STAs and AP within a

cluster running at the same channel need to be synchronized to avoid potential

collisions. To solve this, a novel synchronization method is implemented at the

PHY layer on the SDR device. In the scenario that APs run on the same

channel, one AP is selected as the main AP (MAP), and the rest are the

subordinate APs (SAPs). The setting assumes that all SAPs can receive signals

from the MAP, which serves as the provider of the reference clock. The SAPs

synchronize with the MAP, while all STAs synchronize with their respective

APs. For instance, as depicted in Fig. 1.1, AP2 serves as the MAP while AP1

13



0 20 40 60 80 100
−10

0

10

(a)

AP2

AP3

0 20 40 60 80 100
Packet Sequence

−10

0

10

T
im

e
D

ri
ft

(1
00

ns
)

(b)

AP2

STA

Figure 1.6: Synchronization performance of APs and STAs in a multi-cluster
SRT-WiFi network.

and AP3 are SAPs synchronizing to AP2. This synchronization mechanism

prevents devices from relying on the timer in a non-real-time operating system,

leveraging instead the timer in hard real-time PL. To achieve this, a scheduler

timer with nanosecond precision is added into the TDMA block to trigger

transmissions.

In the PL layer, OFDM RX module performes PHY demodulation, and

demodulated status and symbols are passed to RXI and XPU. In the TDMA

block, a synchronization function is added to synchronize time with a specific

AP by utilizing the demodulated result. The synchronization procedure has

the following steps.

The synchronization function waits for the MAC packet header from the

OFDM RX module and checks the packet’s content. If it’s a beacon packet,

the function continually waits for the service set ID (SSID) in the following

packet payload. Upon reading the SSID, the synchronization function com-

pares it against the target SSID provided by the TDMA driver through the

registers. If two SSIDs match, the buffered time is updated to the schedule
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timer; If not, the synchronization function waits for the next packet, and the

schedule timer continues to run as usual without any update. Notably, this

synchronization method is also compatible with other protocol versions like

IEEE 802.11n/ac/ax.

Using this synchronization mechanism, our experimental results demon-

strate that the synchronization time drift of the SRT-WiFi devices can be

maintained within 0.2 µs, which outperforms the COTS hardware. Fig. 1.6

presents the results of two experiments from [Yun et al., 2022]. In the first ex-

periment, two SAPs, AP2 and AP3, synchronize with a MAP AP1, and their

synchronization time error is measured, as shown in Figure. 1.6 (a). The max-

imum error observed is 0.2 µs. In the second experiment, AP2, acting as an

SAP, synchronizes with the MAP AP1, while a STA synchronizes with AP2.

The maximal synchronization error of the STA in multi-cluster SRT-WiFi net-

works is measured, which is within 1 µs, as depicted in Fig. 1.6 (b). This

improvement on time synchronization accuracy can help reduce guard time

and support shorter time slot lengths, thereby improving the sampling rates.

1.3.1.3. Queue Management

In SRT-WiFi, packets from the PS are pushed into queues before transmis-

sion. Unlike COTS hardware-based RT-WiFi, where the queue number is fixed

and cannot be changed, SRT-WiFi provides greater flexibility in queue con-

figuration. For instance, AR9285 used in RT-WiFi [Wei et al., 2013] has only

8 queues. In SRT-WiFi real-time transmissions, each link has its own queue

stack to guarantee the desired timing and throughput performance. However,

if the number of STAs exceeds the number of available queues in the AP,

packets from different links need to share a queue, potentially causing timing
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Figure 1.7: Queue management issues in real-time networks with shared queues.

violations.

Fig. 1.7(a) shows a device with 10 links but has 8 available queues, causing

STA9 and STA10 to share a queue with others. When multiple packets from

different links enter the same queue, they may wait until the packet at the

queue head being sent, even if their assigned time slots in the superframe occur

earlier. AP will encounter this time violation issue when managing real-time

transmissions for multiple STAs.

In SRT-WiFi, the TDMA block initiates packet transmission. Queues can

be assigned to different links, and the packets from different links are put into

the corresponding queues, as shown in Fig. 1.7(b). The TDMA block’s schedule

determines which queue to trigger for each slot. This flexibility is a feature of

SDR-based systems, as the queues can be configured in software rather than

hard programmed, as in COTS hardware. Given sufficient FPGA resources,

the supported queues can be extended to accommodate any number.

To address the time violation issue when the available AP queues are less
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Table 1.4: Assigned and dynamic queue management maximum and av-
erage packet delay (slot number) with 16 links.

Number of Queues 8 10 12 14 16

Assigned Maximum Delay (slot) 2816 2358 1707 1125 82

Dynamic Maximum Delay (slot) 591 162 106 104 103

Assigned Average Delay (slot) 336 236 159 87 16

Dynamic Average Delay (slot) 271 42 16 16 16

than supported STAs, a dynamic buffer is designed in SRT-WiFi as shown in

Fig. 1.7(c). A dynamic buffer contains a series of slots, each of which stores

one packet at most. When a packet arrives, the TXI pushes it into an unused

buffer slot. Next, based on the schedule, the TDMA module checks the link

information located at the beginning of each time slot and scans the whole

buffer to check if a packet for that link is present. If it finds one, it triggers the

transmission from the corresponding buffer slot. Since each buffer slot holds

only one packet, more buffer slots can be implemented with the same FPGA

resources.

Table 1.4 compares the performance of assigned and dynamic queue man-

agement using 16 links and a variable number of queues. AP periodically gener-

ates a packet that requires only one atomic slot for transmission for each link.

In assigned queue management, the packet is pushed into this pre-assigned

and handled according to the schedule. While in dynamic queue management,

the packet is pushed into an available queue when it arrives. All transmissions

follow a randomly generated schedule where the throughput of each link is

guaranteed and the length of superframe is fixed. During the scheduled trans-

mission, packet delay is recorded, and no packets are dropped due to delay.

The results show that even a small disparity between the number of queues
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and links in the assigned queue management can lead to a significantly high

maximum and average delay. On the other hand, the dynamic queue manage-

ment method can manage more links with the same number of queues and

maintain a lower max. and avg. packet delays. However, it does not completely

eliminate delays since all queues are shared.

1.3.1.4. Link Quality Measurement

The rate adaptation function in SRT-WiFi requires precise SNR measurement.

There are two practical methods developed to meet the SNR requirement.

Both methods leverage the long training field (LTF) in the Legacy physical

layer protocol data unit (PPDU) preamble of the 802.11 PHY signal. The first

method involves calculating the auto-correlation [Lee and Messerschmitt, 2012]

of the LTF. The LTF contains a half symbol followed by two repeated symbols,

which correspond to 160 samples at a 20 MHz sampling rate. So, the LTF shows

the same pattern in every 64 samples [IEEE 802.11 Working Group, 2021]. We

utilize 128 consecutive samples of the LTF to calculate the auto-correlation,

denoted as ρ, and the SNR value (in dB) can then be determined as follows:

SNR = 10 log10

(
ρ

1− ρ

)
(1.1)

where we assume that ρ < 1. Two 64 repeated samples are used, but not the

first 32 samples because of transient effects that can occur at the start of a

transmission in the sender’s hardware.

In the second method, the LTF and a piece of background noise before the

data symbol are buffered after the packet arrival. The power of the background

noise can be measured before packet arrival, and the power of LTF signal
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includes noise power plus the signal power. Then, the SNR (dB) is computed

in this way:

SNR = 10 log10

(
PLTF − Pnoise

Pnoise

)
(1.2)

where PLTF is the signal power of LTF and Pnoise is the power of the background

noise signal before the packet. We assume that PLTF is larger than Pnoise.

Both SNR measurement methods are integrated into the OFDM RX mod-

ule of SRT-WiFi. An SNR value is calculated each time a packet is received.

If the received packet contains a source address, the computed SNR value is

stored along with the source address. The MAC80211 driver forwards the SNR

information to the TDMA driver, who manages the scheduling in the system

and utilizes the SNR data for scheduling decisions. The device manager on

each device interacts with the TDMA driver to access the SNR information

and forwards the SNR information to the central network manager. The cen-

tral network manager uses this SNR data to determine the appropriate data

rate for each link based on the quality of the wireless connections and creates

the network schedule

1.3.2. Processing System (PS) in SRT-WiFi

The two main components of the PS design in SRT-WiFi are the drivers and

the network manager. The drivers act as the interface between the PL and

Linux (see Fig. 1.4), serving two primary functions: 1) configuring parameters

in the PL modules to support various working modes and functions and 2)

managing the packet exchange between the PL and the OS. Each PL module

has a corresponding driver connected to the kernel because each PL module

contains a register page used to set or read status. For example, TXI uses a
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register to determine if a packet requires an ACK and another register to report

the packet delivery status. On the kernel side, sub-drivers handle configuration

tasks within the PL component and interact with the OS by encapsulating

read and write functions into APIs for the MAC80211 driver. The TDMA

block in the XPU also has a register page containing three parts. The first

part is for schedule allocation, including superframe and atomic slot length.

The second part is used for PL synchronization by acquiring AP’SSID for

stations to synchronize with. The third part is a mode switch for toggling

between defaulted CSMA and customized TDMA modes. Since the TDMA

mode’s functions are incompatible with the MAC80211 subsystem, configuring

the TDMA block through MAC80211 is challenging. Therefore, the TDMA

driver is implemented as a miscellaneous character driver (MISC), providing

basic read/write functions for user space. In user space, the network manager

configures the TDMA block by calling the APIs of the TDMA driver so that

it can adjust the schedule, set parameters, and switch modes as needed.

In SRT-WiFi, there are three types of network managers forming a hier-

archical structure: the central network manager (CNM) managing all network

resources, cluster managers (CM) operating on the APs, and device managers

(DM) operating on the STAs. During the process of joining an SRT-WiFi net-

work, the CNM starts first, awaiting TCP connections from CMs to distribute

schedules to the links. Following this, CMs initiate the cluster networks, with

slave APs synchronizing with the master AP on the same channel, and then

await STA connections. To simplify the synchronization and the joining pro-

cess, beacon and shared slots remain fixed throughout system operation, and

this information is broadcasted among all devices. Once a STA powers on, it

scans the channels, synchronizes with the designated AP, and joins the network.

20



AP1

STA1
STA2

AP2

STA3 STA4

USRP

Router

CNM

Figure 1.8: An overview of the multi-cluster SRT-WiFi testbeds.

Once the network is joined, the DM on the STA establishes a TCP connection

with the CM on the AP to receive and update the schedule. Until the schedule

is received, the STA uses shared slots to complete the joining process. Unlike

assigned slots, shared slots are contention-based, where each sender first under-

goes a random backoff, similar to CSMA mode, and then senses the channel.

During operation, DMs and CMs on each device monitor link qualities and

interference. This channel information is collected by the CNM, which then

determines and updates schedules and data rates for the DMs and CMs to

adapt to current channel conditions, ensuring stable transmissions.

A unique aspect of SRT-WiFi network management is its capability to

dynamically adjust slot lengths within the schedule to support rate adaptation

during real-time transmission. While the maximum transmission unit (MTU)

for an individual link remains fixed, the data rate may vary depending on

interference levels. A lower data rate requires more time to transmit a packet of

the same length, which can exceed the time slot boundary and lead to collisions.

SRT-WiFi addresses this issue with dynamic slot lengths. In the schedule,

an atomic slot (AS) is defined as the shortest slot length that can support

transmitting an MTU-sized packet at the highest rate. When transmitting

at a lower rate, a packet can use multiple consecutive atomic slots without
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preemption. Therefore, by selecting different rates during runtime, the packet

transmission can occupy varying atomic slots.

1.3.3. Performance Evaluation

A testbed of multi-cluster SRT-WiFi is implemented to perform a comprehen-

sive evaluation. This network configuration setting includes two APs, AP1 and

AP2 for Cluster1 and Cluster2, operating on a single channel, with each AP

having two STAs connected, STA1 and STA2 in Cluster1, STA3 and STA4

in Cluster2. Fig. 1.8 provides a testbed overview with a total of four links.

CNM and APs are connected to a router in the testbed, forming a backbone

network, and stations connect to their APs accordingly. Also, a USRP device

is employed to create interference via a noise antenna positioned near AP2.

Due to the page limit, this chapter presents a single experiment to showcase

the rate adaptation function in SRT-WiFi. In this experiment, interference is

introduced to the testbed. Each device measures its reception SNR and reports

it to the CNM. The CNM then constructs the schedule and selects appropriate

data rate. In the experiment, We add the interference on the AP side and let

the station both send UDP packets to the AP and measure the PDR and SNR.

The level of interference is not fixed but varied every 0.5 seconds, meaning that

in the first half of each second, the interference rises to a set level while in the

next half of that second, the interference shuts down so that the interference

varies fast.

Fig. 1.9 (b) shows the measured SNR of the channel and Fig. 1.9 (a) pro-

vides a closer look at a portion of the measured SNR to illustrate the interfer-

ence variations. The SNR values decrease from 27 to 12 dB and rise gradually.
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Figure 1.9: Data rate and throughput comparison between SRT-WiFi and reg-
ular WiFi in the presence of interference.

Fig. 1.9 (c) presents the data rates for both SRT-WiFi and standard WiFi, the

latter of which uses the Minstrel algorithm [Xia et al., 2013] for rate adaptation

based on transmission history. The corresponding PDR is shown in Fig. 1.9 (d).

Observing The experiment result reaveals that standard WiFi cannot maintain

stable transmissions when the SNR value falls below 20 dB. In contrast, SRT-

WiFi employing a rate adaptation method can provide stable transmissions

under different SNR conditions. The CNM buffers the measured SNR values

over a time window and adjusts the data rate based on the lowest SNR value in

the buffer; once a lower SNR is detected, the data rate is immediately reduced

and does not increase until all buffered SNR values exceed the threshold for
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a higher rate. This method wastes some resources when the channel condition

is good, but it ensures stable transmissions. The performance of rate adap-

tation in SRT-WiFi under interference is shown in Fig. 1.9 (c), characterized

by a stepped pattern without rapid changes. Fig. 1.9 (d) illustrates the PDR

of SRT-WiFi during the test, demonstrating stable performance thanks to the

rate adaptation mechanism.

1.4. GR-WiFi based on 802.11a/g/n/ac

SRT-WiFi currently provides real-time, reliable wireless communication for

industrial control applications but is limited to IEEE 802.11a/g PHYs and

SISO communications. Our long-term goal is to enhance SRT-WiFi to support

newer WiFi standards such as IEEE 802.11n/ac/ax. As the first step towards

this goal, we extend SRT-WiFi on GNU Radio, a popular open-source SDR

platform, and introduced GR-WiFi, a GNU Radio-based open-source platform

for IEEE 802.11 research. Note that there is already a GNU Radio imple-

mentation for IEEE 802.11/a/g/p available as referenced in [Bloessl et al.,

2013]. In this work, we implement PHYs of 802.11a/g/n/ac standards on GR-

WiFi, which can support the Legacy OFDM (Legacy), high-throughput (HT)

and very-high-throughput (VHT) PHY formats with SISO and up to 2×2 SU-

MIMO and MU-MIMO. Fig. 1.7 summarizes the three supported PHY formats

(Legacy, HT and VHT) in GR-WiFi and detail reference can be found at IEEE

802.11 standards [IEEE 802.11 Working Group, 2021]. In the following sections,

we describe the design of the packet transmission and reception functions in

GR-WiFi and then present their implementation details on GNU Radio.
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Figure 1.10: IEEE 802.11a/g/n/ac physical layer packet formats.

1.4.1. Packet Transmission Design

The packet transmission function in GR-WiFi follows these steps to generate

the packets of different supported formats in 802.11a/g/n/ac standards.

In Legacy format, beginning with the preparation of training field, trans-

mitter converts the given orthogonal frequency division multiplexing (OFDM)

training symbol from frequency to time domain waveform by applying In-

verse Fast Fourier Transform (IFFT), scales the waveform amplitude with a

tone scaling factor and inserts the guard interval (GI). In the Legacy signal

field, 24-bit Legacy signal bits, which contain information on packet length

and modulation and coding scheme (MCS) go through binary convolutional

coding (BCC) and interleave process. The interleaved bits are then modulated

with binary phase shift keying (BPSK) and converted to a scaled time do-

main waveform. The data payload that is distributed into data symbols will

go through the same steps as Legacy signal symbols but with an additional bit

of scrambling before the BCC.

The HT format’s packet transmission is more complex due to the MIMO

and beamforming support. First, the signal is generated for multiple spatial

streams (SSs) for MIMO transmissions. Each SS has the same packet format

as shown in Fig. 1.10. Before each SS is modulated and emitted into the air
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through antennas, a cyclic shift is applied to each SS to prevent constructive

interference and unintentional beamforming, which happen when the same

signal is transmitted through different transmit chains. After applying cyclic

shift, the modulation and scaling steps are the same as the Legacy packet. The

Legacy signal field in HT packet has the rate set to lowest, and the length is

computed to cover the duration of the following HT portion transmission. The

HT signal field is the same as Legacy signal field but occupies two symbols. The

HT portion starts from the HT training field. Besides the cyclic shift, there is

also the spatial mapping for each sub-carrier to apply the required phase for

beamforming, called the Q matrix in the standard. HT-STF and each of the

HT-LTFs have one symbol. The number of the HT-LTFs is determined by the

SS number to provide sufficient channel information for the receiver to estimate

the channel(s). In HT data symbols, after coding, stream parsing is performed

to separate the coded bits into multiple spatial streams for MIMO Interleave

is also applied for each spatial stream but with different phase rotations as

specified in the standard. Cyclic shift, waveform scaling, and GI insertion are

necessary steps before the packet is ready to be transmitted through the air.

The signal generation for the VHT format is similar to HT’s, but it supports

256 QAM, up to 8 spatial streams, and a 160 MHz bandwidth.

1.4.2. Packet Reception Design

To design the packet reception in GR-WiFi, we begin by addressing the packet

reception trigger. As shown in Fig. 1.10 from sample 10 to 170, the STF has

10 repeated symbols last for 0.8 µs s with 16 samples. We utilize an auto-

correlation method that leverages the 10 times repetition of the STF symbol.
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This approach is robust against multipath propagation effects CFO distortion

during the reception. The auto-correlation output forms a plateau. Once the

output passes the threshold, we measure the length of the continuous plateau

to detect the STF and initiate the reception process.

Once packet reception is triggered, the next steps involve packet synchro-

nization and fine tune the timing. To fine-tune the timing, we find the maxi-

mum auto-correlation within a specified time window and locate two shoulder

indices at 80% of the maximum value on both the left and right sides. As il-

lustrated in Fig. 1.10, the Long Training Field (LTF) repeats 2.5 times. The

correlation reaches its peak at the start of the LTF Guard Interval 2 (GI2)

and drops at the end of the LTF GI2, making the center of this correlation

correspond to the middle of LTF GI2.

With the correct timing, we estimate channel and CFO. The CFO of the fol-

lowing samples will be compensated. For each data symbol, it will be converted

to frequency domain and then be compensated with channel. The recovered

data symbols are demodulated using QAM constellations and then decoded.

Currently, the proposed receiver only supports the binary convolutional coding

(BCC) with a soft-input Viterbi decoder.

1.4.3. Implementation and Evaluation

We now present the implementation details of GR-WiFi on the GNU Radio.

As shown in Fig. 1.11, we implement both SISO and 2×2 MIMO receivers.

The 2×2 MIMO can also handle SISO packet reception. However, we design

a seperate SISO block because each port in this block processes samples in

parallel. Using a MIMO receiver to decode SISO input will keep the second port
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Figure 1.11: GNU Radio implementations of IEEE 802.11a/g/n/ac SISO and
2×2 MIMO receivers and transmitter.

running without processing any samples. For the transmission, the transmitter

only generates packet samples, so the waste is negligible.

1.4.3.1. Key Blocks in GR-WiFi implementation

The GR-WiFi implementation on GNU Radio includes the following key blocks:

Pre-Processing: The pre-processing block is a hierarchical block to compute

the auto-correlation of the input samples. The values obtained during the auto-

correlation computation are reused to compute the coarse CFO. The average

blocks use a sliding window with a maximum length to prevent repeated com-

putations of samples and avoid the accumulation of floating-point errors.

Trigger: The trigger block takes the continuous auto-correlation samples as

the input and detects the plateau of auto-correlation. Once the plateau length

meets a threshold, it generates output flag to trigger the synchronization block.

The trigger block also has a state machine to avoid multiple triggers for one

packet to avoid wasting computation resources.

Synchronization: The synchronization block is triggered to use auto-correlation

of LTF and identify the start of LTF, with the index being passed to the next
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block. At the same time, the synchronization block compensates the coarse

CFO from the pre-processing block for the LTF samples, re-estimates the CFO

with two LTF symbols, and computes the accurate CFO value. This accurate

CFO value is passed tp next block using a tag.

Signal: The signal block is triggered by the synchronization block to get the

timing of the packet and the estimated CFO. It first compensates the CFO

for LTF and Legacy Signal to estimate the Legacy channel and demodulate

and decode the Legacy Signal. If the Legacy Signal is correctly decoded, this

packet is identified as at least a Legacy packet with the maximum possible

timing length corresponding to the Legacy length. The signal block computes

the symbol and sample number according to the MCS and packet length. The

following input samples within the sample number will be compensated with

CFO and passed to the next block. That means the signal block chops the input

sample stream and only keeps useful packet samples for further processing. For

MIMO receivers, the Signal2 block is used, with the primary difference being

that Signal2 also chops samples from the second sample stream to match the

length of the first stream and compensates for the CFO of the second stream.

Demodulation: The demodulation block converts the OFDM symbols to

QAM constellations and disassembles them into soft bits. A state machine

is used to determine packet format. It first updates the Legacy channel and

checks whether legacy MCS is the lowest. The lowest MCS leads to further de-

modulation and decodes on following two symbols to check the HT Signal and

VHT Signal A, which will decide the following demodulation. If the Non-Legacy

checking fails, the packet is demodulated as Legacy. If it is either HT or VHT,

the channel is re-estimated, and packet is then demodulated accordingly. For

the OFDM part, the channel is compensated after FFT, and pilots are used to
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correct the residual CFO. The QAM constellations are disassembled into soft

bits and deinterleaved. Some steps are simplified to speed up the processing,

such as deinterleaving using a pre-defined lookup table for each symbol but not

following the method given in the standards. The demodulation block outputs

the soft bits to the next decoding block.

The difference between the demodulation block and demodulation-2 block

lies in their design purposes and functionalities. The demodulation block is

intended for SISO and MU-MIMO receivers. It can perform channel sounding

and receive MU-MIMO packets with group number and position in the group to

estimate the corresponding channel and demodulate accordingly. On the other

hand, the demodulation-2 block is designed for the AP side in MU-MIMO,

which can handle two stream inputs simultaneously. To simplify processing,

channel sounding function is removed. However, we consider adding full func-

tionality to all blocks in future developments.

Decoding: The decoding block processes a bit stream input and outputs a

message stream, which is the required input type for the socket PDU block. It

takes the input soft bits with a specified trellis length, decodes the packet, and

checks the cyclic redundancy check 32 (CRC32). The Viterbi decoder performs

a forward update for the whole packet and then traces back from the very end,

which is the 6-bit-zero tail. This approach is used because GNU Radio accumu-

lates some samples and then provides them to the blocks so that the proposed

receiver does not aim for real-time performance in the communication stack.

If the packet is correct, decoding block passes the packet to the Python MAC

layer through a UDP message for further customized processing. In case of a

null data packet (NDP) used for channel sounding that has no bits to decode,

the decoder simply packages the channel information into a UDP message and
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sends it to the MAC layer.

1.4.3.2. Performance Evaluation

We now present the performance evaluation of GR-WiFi through simulations

and real-world testbed experiments.
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Figure 1.12: GR-WiFi packet delivery ratio against signal-to-noise ra-
tio.(a)Legacy format packet, (b)HT format packet, and (c)VHT packet.

We generate simulation signal samples and have the receiver demodulate.

The receiver successfully receives the packet under low SNR conditions, indi-

cating its enhanced performance in handling lower-quality signals. A higher

SNR value means a better wireless link that can support higher MCS, leading

to higher data rates. Fig. 1.12 presents the packet delivery ratio (PDR) of GR-
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WiFi for three different format packets under different SNR conditions with

different MCS. The figure reveals that a VHT format may require a higher

SNR than the other two formats to achieve the same PDR. Fig. 1.13 presents

the PDR of GR-WiFi VHT and HT for SU-MIMO transmissions. With the

additive white Gaussian noise (AWGN) channel simulation, the performance

is similar to SISO. However, the performance drops in real-world multi-path

propagation conditions.
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Figure 1.13: (a) GR-WiFi HT SU-MIMO packet delivery ratio against SNR.
(b) GR-WiFi VHT SU-MIMO packet delivery ratio against SNR.

Fig. 1.14 shows our MU-MIMO testbed, which aims to demonstrate the

simultaneous transmissions between AP and two stations. Equipment deployed

for the testbed includes one USRP B210 with 2×2 TRX antenna array and

two USRP B200 with 1×1 TRX antennas. One complete transmission involves

the following steps: the AP first broadcasts NDP packets to have all stations’
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Figure 1.14: GR-WiFi MU-MIMO testbed with 1 AP (laptop) and two STAs
(desktops) where real channel response is shown at the AP side.

attention. Stations receive and capture the two LTFs in the NDP packets.

Each station sends its two received LTFs back to AP. AP gathers all the LTFs

information from stations and calculates the steering matrix accordingly. Based

on the steering matrix, AP can then transmit packets biased in a particular

direction based on where the station is. In our testbed, we demonstrate the

successful reception in both stations.

The current implementation of GR-WiFi has certain limitations, primar-

ily due to its inability to fully connect to a real-world WiFi network. This is

because the receiver cannot return the acknowledgment (ACK) to the sender

within the designated ACK timeout period. Nonetheless, it can operate as a

passive receiver to intercept packets transmitted over the air. Despite its limi-

tations, GR-WiFi is a crucial step in exploring new protocols, and its successful

deployment on GNU Radio offers a valuable reference for future implementa-

tions on SRT-WiFi.
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1.5. Conclusion and Future Work

In this chapter, we review three different WiFi implementations for supporting

high-speed and real-time industrial control applications. The RT-WiFi solution

is based on COTS hardware. SRT-WiFi is implemented on an advanced SDR

platform where the radio functions are programmed on FPGA to support hard

real-time performance. GR-WiFi is implemented on GNU Radio-based SDR

platform, supporting a much shorter development period. Extensive experi-

ments have been conducted on both SRT-WiFi and GR-WiFi for functional

validation and performance evaluation.

As future work, we will port the implementations of 802.11n/ac PHYs from

GR-WiFi to SRT-WiFi to make it full-blown and support hard real-time per-

formance. We will add newer standards to SRT-WiFi, such as IEEE 802.11ax.

Both FPGA-based SRT-WiFi and GNU Radio-based GR-WiFi implementa-

tions, once mature, will be made public to the wireless communities to support

a broad range of research and development (R&D) activities.
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