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ENGR352 Problem Set 02

Transfer function of an estimator

1. Using Eq. (1.1.4-27) from the text, find the correct value of r̃ss (the result given in the text is incorrect).

2. Obtain the correct G̃ in (1.1.4-29).

3. Obtain the correct H̃1(z) in (1.1.4-30).

4. With the correct H̃1(z) obtain the steady state position error x̃1ss for the input being a constant (step

function) acceleration u(k) = u0 = 10m/s2 using the z-transform final value theorem.

5. Is the result from 4 consistent with the result from 1? How could one obtain directly the result for 4

from the result of 1?
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ENGR352 Problem Set 03

1. Matrix inversion lemma. Verify (1.3.3-11) by multiplication, which has to yield the identity matrix.

2. Quadratic forms. Given the matrices

A1 =

 1 4

2 2



A2 =

 1 5

1 2


A3 =

 1 3

3 2


evaluate

qi = x′Aix i = 1, 2, 3

where

x = [x1 x2]
′

and explain the result.
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ENGR352 Problem Set 04

1. Controllability and Observability of Linear Dynamic Systems. Given the dynamic system

(1.3.8-1)–(1.3.8-2) with

F (k) = F =

 1 T

0 1


G(k) = G =

 T 2/2

T


H(k) = H1 = [1 0]

H(k) = H2 = [0 1]

(i) Is the system {F,G,H1} completely controllable and completely observable?

(ii) Is the system {F,G,H2} completely controllable and completely observable?

(iii) If the state components are x1=position and x2=velocity, explain in words the observability results.

2. Normalization of Probability Density Functions. Find the normalization constants for the

following pdfs:

(i) Exponential

p(τ) = c1e
−λτ τ ∈ [0,∞)

(ii) Laplace

p(τ) = c2e
−λ|τ | τ ∈ (−∞,∞)

(iii) Rayleigh

p(τ) = c3τ e
− τ2

2a2 τ ∈ [0,∞)
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ENGR352 Problem Set 04
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ENGR352 Problem Set 05

1. Accuracy of a poll. Given the binary i.i.d. (independent, identically distributed) random variables

xi, with

P{xi = 1} = p = 1− P{xi = 0}

(i) Find the mean and s.d. (standard deviation) of

z =
1

n

n∑
i=1

xi

(ii) Evaluate the double of the s.d. for n = 1200 and p = 0.5 and express it as a percentage.

2. Problem 1-2 from text.

3. Average power dissipated in a resistor subjected to a random voltage. A DC voltage V is a

random variable with a symmetric triangular pdf in the interval [V0 − a, V0 + a] (in volts) and zero outside

it.

(i) Write the expression of this pdf.

(ii) Find its mean and variance.

(iii) Find the expected value of the power dissipated when it is applied to a resistor R = 1Ω.

(iv) What is the extra percentage power in (iii) for a/V0 = 0.2 vs. the nonrandom case where V = V0.
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ENGR352 Problem Set 06

1. Reliability and Life of a Mechanism. Given that the time τ until a mechansim breaks down (its

“life”) is exponentially distributed

p(τ) = e−τ τ ∈ [0,∞)

(i) Find its expected life (use integration by parts)

(ii) Find the pdf of its “remaining life” given that it did not break down up to τ = τ0 = 1 (the remaining

life is τ1 = τ − τ0).

(iii) Find the expected value of the remaining life τ1 according to (ii).

(iv) Comment of the suitability of the exponential distribution for this problem.

2. Repeat Problem 1 for a Rayleigh distributed life

p(τ) =
τ

a2
e
− τ2

2a2 τ ∈ [0,∞)

where a =
√

2/π.

For item (iii) it is recommended to use integration by parts as well as numerical integration to verify the

result.
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ENGR352 Problem Set 07

1. Accuracy of Estimation. Given the jointly Gaussian scalar random variables

x ∼ N (µx, σ
2
x) y ∼ N (µy, σ

2
y)

with

cov(x, y) = ρ σxσy

(i) Find the values of their correlation coefficient ρ such that the conditional variance of x given y is half

of its unconditional variance, i.e.,

var(x|y) = 0.5 var(x)

(ii) What is the smallest achievable var(x|y)? What values of ρ yield this?

(iii) Give the relationship between x and y when the requirement of (ii) is satisfied.

2. Autocorrelated Random Process. Given a dynamic system of the form (1.4.19-11) to be used as

a model for an autocorrelated stationary process (a voltage) with the following properties:

(i) The autocorrelation coefficient of this process between for two points in time 10s apart is 0.1. Using

this, find the parameter a of the model. Indicate its units.

(ii) Its instantaneous m.s. value should be 5V2. Find the power spectral density (psd) S0 of the white

noise driving this system. Indicate its units.

(iii) What are the units of the noise n(t) in (1.4.19-11)? Show that the units of its psd obtained above

are the units of n(t) squared and divided by the frequency units (Hz).
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ENGR352 Problem Set 08

1. A Markov Chain Driven System. A system exhibits two behavior modes. The transition probabil-

ities between its two modes are given by the elements of the transition probability matrix (see Eq. (1.4.22-14)

in the text)

Π =

 0.9 0.1

0.2 0.8


(i) Find the steady state of its probability vector (defined in Eq. (1.4.22-10) in the text).

(ii) What is the ratio of the time this system spends in state 1 vs. in state 2?

2. Pipelines and the Central Limit Theorem. A pipeline is to be assembled from N sections whose

lengths xi are i.i.d. random variables with uniform distribution

xi ∼ U(x0 − ε, x0 + ε)

(i) Find the mean and variance of xi.

(ii) Using the Central Limit Theorem find the probability that, for N = 100 pipes with nominal length

x0 = 10m and tolerance ε = 1cm, the total length L differs by more than 9.5cm from the nominal one.
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ENGR352 Problem Set 09

1. Probability Concentration Regions. A variable has a chi-square distribution with n = 400 degrees

of freedom.

(i) Find its one-sided 95% probability region (cutting its upper 5% tail).

(ii) Find its two-sided 95% probability region (cutting its upper and lower 2.5% tails).

(iii) Find the two-sided 95% region for

yn = xn/(n/4)

and its relative size from E{yn}.

(iv) Repeat (iii) for n = 800.

(v) Find the ratio of the two relative interval lengths in (iii) and (iv).

(vi) Could you have predicted this ratio based on the two values of n?
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ENGR352 Problem Set 10

1. From prior to posterior pdf. Given the observation z = 10 of the variable x, with pdf

p(z|x) = N (z;x, σ2)

with σ = 10 and the prior of x as

p(x) = N (x;x0, σ
2
0)

with x0 = 5 and σ0 = 20.

(i) Find the estimate x̂MAP.

(ii) Find the variance of the posterior pdf p(x|z).

(iii) Write the expresssion of posterior pdf p(x|z) with the above numbers.

2. Estimation of the parameter of a pdf. Given a Rayleigh distributed observation

p(z) =
z

a2
e
− z2

2a2

with unknown parameter a.

(i) Find the MLE of a based on a single observation z.

(ii) Find the MLE of a based on the i.i.d. observations zi, i = 1, . . . , n, with the above pdf.
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ENGR352 Problem Set 11

Problem 2-4 from the text.
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ENGR352 Problem Set 12

1. Problem 2-12 from the text.

2. Problem 2-14 from the text.
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ENGR352 Problem Set 13

1. Information Fusion and evaluation of its benefit. Given the covariance matrix characterizing

the quality of the initial (prior) information (from source 1) about a vector x as

Pxx = E[(x− x̄)(x− x̄)′] =

 1 0.5

0.5 1


where x̄ is the initial estimate (initial mean).

A sensor (source 2) is used to make the following scalar observation on x

z = Hx+ w

where

H = [1 1]

and the noise w has moments

E{w} = w̄ = 0 E{w2} = σ2
w = 1

and is independent of the error in the initial estimate x̄.

(i) Evaluate the mean z̄ of z based on the initial mean of x and the properties of w.

(ii) Evaluate the covariance matrices

Pzz = E[(z − z̄)(z − z̄)′] = E[(z − z̄)2]

and

Pxz = E[(x− x̄)(z − z̄)′]

Note: these results should be independent of the initial estimate of x.

(iii) Using the fundamental equations of linear estimation (Sec. 3.3), evaluate the covariance (MSE matrix)

Pxx|z of the “fused estimate” resulting from combining the information from the two sources.

(iv) Compare the uncertainty volumes (which are proportional to the square roots of the determinants

of the covariance ematrices) before fusion (i.e., based on the prior) and after fusion (based on the posterior).
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ENGR352 Computer Project 14

Localization based on range measurements (simplified GPS problem).

There are 4 satellites whose locations w.r.t. an ECEF (Earth Centered Earth Fixed) coordinate system

are (in km)

xS1
= [0 0 15, 000]′

xS2
= [15, 000 0 8, 000]′

xS3 = [0 15, 000 8, 000]′

xS4
= [10, 000 10, 000 8, 000]′

Your unknown location x has the true value

x0 = [ξ0 η0 ζ0]′ = [10 10 6, 380]′

A range (distance) measurement is made from from each satellite to your location

zi = d(x0, xSi
) + wi i = 1, . . . , 4

where d(x0, xSi) is the true distance, with i.i.d. measurement errors

wi ∼ N (0, σ2
w)

where σw = 0.02km.

(i) Write the ILS equations to estimate your location x, with true value x0.

(ii) Using a random number generator, generate a set of noisy measurements as specified above. Using

the ILS method, find the LS estimate x̂ of x based on these measurements; use as initial estimate the vector

[0 0 6, 370]. Repeat this N = 100 times (with independent random variables from run to run) and find

the mean square value of the estimation errors and RMS value for each coordinate separately.

(iii) Evaluate the (theoretical) MSE for each component of the LS estimates for this problem. Compare

with the results from (ii). Are they statistically compatible?
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ENGR352 Problem Set 15

1. Information matrix form of Fusion. Use (3.4.2-6) to verify the result you got in Problem Set

13, item 1(iii). Hint: P (k)−1 plays the role of the prior information, while P (k + 1)−1 plays the role of the

posterior information.
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ENGR352 Problem Set 16

1. Problem 3-9 from the text.

2. Problem 3-10 from the text.
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ENGR352 Problem Set 17

1. Problem 3-11 from the text.

2. Problem 3-12 from the text.
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ENGR352 Problem Set 18

1. Problem 4-3 from the text.

2. Problem 4-4 from the text.
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ENGR352 Problem Set 19

1. Problem 4-8 from the text.
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ENGR352 Problem Set 21

1. Joseph form of the state MSE matrix recursion.

(i) Prove (5.2.3-18) from the text. Hint: express x̃(k + 1|k + 1) in terms of the previous prediction error

x̃(k + 1|k) using an arbitrary filter gain.

(ii) Show the recursion of x̃(k + 1|k + 1) in terms of the previous estimation error x̃(k|k) for an arbitrary

filter gain.

(iii) Find the recursion of the MSE matrix P (k + 1|k + 1)
∆
= E[x̃(k + 1|k + 1)x̃(k + 1|k + 1)′] in terms of

the previous MSE matrix P (k|k) for an arbitrary filter gain. (Note: P is not a covariance anymore because

the estimate is not optimal — not the conditional mean anymore, due to the arbitrary gain).

(iv) What is the stability condition for (iii)?
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ENGR352 Problem Set 22

1. Problem 5-1 from the text.

2. Computer Application 5-2 from the text.
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ENGR352 Problem Set 23

Problem 5-14 from the text.

Problem 5-15 from the text.



engr352/engr352p24 September 13, 2018)

ENGR352 Problem Set 24

Problem 5-16 from the text.

Problem 5-17 from the text.
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ENGR352 Problem Set 26

Problem 6-1 from the text.
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ENGR352 Problem Set 27

1. Problem 6-8 from the text.

2. Problem 6-9 from the text.
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ENGR352 Problem Set 28

1. Problem 10-1 from the text.

2. Problem 10-2 from the text.
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ENGR352 Problem Set 29

1. Problem 10-7 from the text.

2. Problem 10-8 from the text.
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ENGR352 Problem Set 30

1. Problem 10-10 from the text.

2. Problem 10-11 from the text.
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ENGR352 Problem Set 32

Problem 11-2 from the text.
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ENGR352 Problem Set 33

Problem 11-6 from the text.

Problem 11-7 from the text.



engr352/engr352p35 September 17, 2018)

ENGR352 Problem Set 35

Problem 11-9 from the text.
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ENGR352 Computer Project 38

Localization based on range measurements with clock bias (GPS problem).

There are 6 satellites whose locations w.r.t. an ECEF (Earth Centered Earth Fixed) coordinate system

are (in km)

xS1
= [0 0 15, 000]′

xS2
= [15, 000 0 8, 000]′

xS3 = [0 15, 000 8, 000]′

xS4
= [10, 000 10, 000 8, 000]′

xS5
= [−10, 000 − 10, 000 8, 000]′

xS6 = [−5, 000 − 10, 000 10, 000]′

Your unknown location x has the true value

x0 = [ξ0 η0 ζ0]′ = [10 10 6, 380]′

A noisy pseudorange measurement (pseudodistance — based on propagation time measured with an

imperfect clock) is made from each satellite to your location x

zi = h(x, b, xSi
) + wi = d(x, xSi

) + b+ wi i = 1, . . . , 6

where

d(x, xSi
) = ‖x− xSi

‖

is the Cartesian distance from x to xSi
, with i.i.d. measurement errors (noises)

wi ∼ N (0, σ2
w)

where σw = 0.01km and an unknown constant timing bias b (expressed as a distance error, i.e, the local

clock error is already multiplied by the propagation speed).

The vector to be estimated is

x = [x′ b]′

The true (unknown) value of the bias is b0 = 0.03km.

Note: The expression of the measurement zi is written in terms of the unknowns x and b, which are

the variables that will appear in the estimation algorithm. The true values, subscripted by 0, are to be used

only for the error calculation in the algorithm evaluation.

(i) Write the ILS equations to estimate x (your location and timing bias).



(ii) Using a random number generator, generate a set of noisy measurements as specified above. Using

the ILS method, find the LS estimate x̂ of x based on these measurements; use as initial location estimate

the vector [0 0 6, 370] and for the bias use zero as initial estimate. Repeat this N = 100 times (with

independent random variables from run to run) and find the mean square value of the estimation errors and

RMS value for each component separately.

(iii) Evaluate the (theoretical) MSE of the LS estimates for this problem. Compare with the results from

(ii). Are they statistically compatible?

(iv) Evaluate the (theoretical) RMSE of the horizontal error, the horizontal and vertical DOP.

(v) Repeat (ii)–(iv) assuming only satellites 2,3,4,5 are available. Why is the VDOP so different?

2
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ENGR352 Final Problem
Multisource Information Fusion

Assume you are receiving the output of a Kalman Filter based on a DWNA (direct discrete time white

noise acceleration) motion model with position observations in the presence of additive zero mean white

measurement noise with σw = 10m. Assume the process noise to be independent of the measurement noise,

zero mean, white and with σv = 0.25m/s2. The sampling interval is T = 2s.

An external noisy measurement

y = Cx+ n

is obtained from an independent source, where

C = [c1 c2]

and

n ∼ N (0, σ2
e)

where σe = 5m.

(i) Evaluate the steady state (s.s.) covariance P̄ from this filter.

(ii) Develop the appropriate information fusion equations between the (s.s.) output of the above filter

(x̄, P̄ ) at a certain time and the external measurement y (assumed to be made at the same time) using the

fundamental equations of linear estimation (Sec. 3.2.1). Give the expressions of the fused estimate x̂ and its

asociated covariance matrix P̂ .

(iii) Evaluate the covariance of the fused state estimate for case 1: c1 = c2 = 1.

(iv) Evaluate the covariance of the fused state estimate for case 2: c1 = −c2 = 1.

(v) Which case yields smaller final errors? Can you provide an explanation of the result?
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