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ENGR352 Problem Set 02 SOLUTION

1.

r̃ss = 0.025m

2.

G̃ =

 0.00125

0.075


3.

H̃1(z) =
0.00125(z + 1)

z2 − 0.75z + 0.25

4.

U(z) =
10z

z − 1

X̃1(z) = U(z)H̃1(z)

x̃1ss = lim
z→1

(z − 1)X̃1(z) = 0.05m

5. The result from 4 is consistent with the result from 1. Using the linearity property, it could be obtained

directly from the result of 1 by multiplying the latter by 2, because the input in 4 is twice the input in 1.
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1. Multiplying the two sides of (1.3.3-11) one obtains

(P−1 +H ′R−1H)[P − PH ′(HPH ′ +R)−1HP ] = I + T2 + T3 + T4

where

T2 = −H ′(HPH ′ +R)−1HP

T3 = H ′R−1HP

T4 = −H ′R−1HPH ′(HPH ′ +R)−1HP

Then

T2 + T3 = −H ′(HPH ′ +R)−1HP +H ′R−1HP

= −H ′[(HPH ′ +R)−1 −R−1]HP

= −H ′[I −R−1(HPH ′ +R)](HPH ′ +R)−1HP

= −H ′[I −R−1HPH ′ − I](HPH ′ +R)−1HP

= H ′R−1HPH ′(HPH ′ +R)−1HP

= −T4

i.e., one has only the identity matrix left from the multiplication.

2.

qi = x′Aix = x2
1 + 6x1x2 + 2x2

2 i = 1, 2, 3

because

A3 = (A1 +A′1)/2 = (A2 +A′2)/2

In general

x′Ax = x′[(A+A′)/2 + (A−A′)/2]x = x′[(A+A′)/2]x

because A−A′ has zero diagonal terms and is antisymmetric. Consequently,

x′[(A−A′)/2]x = 0

and this explains the result.
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1.

(i)

QC =

 T 2/2 3T 2/2

T T

 rank(QC) = 2

QO =

 1 0

1 T

 rank(QO) = 2

i.e., completely controllable and completely observable.

(ii)

QC =

 T 2/2 3T 2/2

T T

 rank(QC) = 2

QO =

 0 1

0 1

 rank(QO) = 1 < 2

i.e., completely controllable but NOT completely observable.

(iii) The complete observability in case 1 is a consequence of the fact that from position-only observations

one can infer the velocity (by differencing) but from velocity-only observations one cannot infer the position

because the intial position (the constant in the integration from velocity to position) is not known.

2. The integral of each pdf over its domain has to be unity.

(i)

c1 = λ

(ii)

c2 = λ/2

(iii)

c3 = 1/a2
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1.

(i)

E{xi} = 1 · p+ 0 · (1− p) = p

E{x2
i } = 12 · p+ 02 · (1− p) = p

The s.d. of xi is

σxi =
√
E{x2

i } − [E{xi}]2 =
√
p− p2 =

√
p(1− p)

E{z} =
1

n

n∑
i=1

E{xi} = p

σz =

√
1

n2
[nσ2

xi
] =

√
p(1− p)

n

(ii)

2σz = 2

√
0.5(1− 0.5)

1200
≈ 3%

2. Let

p̄ =
1

N

N∑
i=1

xi

Then, relying on p̂, one has

σp̄ =
√
σ2/N =

√
p̂(1− p̂)
N

≈
√

p̂

N

Confirmation can be taken as ∣∣∣∣ p̄− p̂p̂
∣∣∣∣ ≤ 0.1

To obtain this with 95% probability one needs

2
√
p̂/N

p̂
≤ 0.1

which yields

N ≥ 4 · 106

3.

(i)

p(V ) =


V−V0+a

a2 V0 − a < V < V0

− V−V0−a
a2 V0 < V < V0 + a

0 otherwise

(ii)



Because of symmetry, E{V } = V0. The variance is, with x = V − V0,

var(V ) = 2

∫ a

0

x2 a− x
a2

dx =
a2

6

(iii)

E{V 2/R} = (E{V })2 + var(V ) = V 2
0 +

a2

6

(iv)
E{V 2}
V 2

0

= 1 +
a2

6V 2
0

a2

6V 2
0

= 0.22/6 = 0.67%

2
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1.

(i)

E(τ) =

∫ ∞
0

τe−τ dτ = 1

(ii)

p(τ |τ ≥ τ0) =
p(τ)

1− F (τ0)
τ ≥ τ0

where the CDF of τ is

F (τ0) =

∫ τ0

0

e−τdτ = 1− e−τ0

Thus

P{τ ≥ τ0} = 1− F (τ0) = e−τ0

and

p(τ |τ ≥ τ0) =
p(τ)

e−τ0
= e−(τ−τ0) τ ≥ τ0

Then use the transformation

τ1 = τ − τ0

to get

pτ1(τ1) = pτ (τ1 + τ0|τ1 + τ0 ≥ τ0) = e−τ1 τ1 ≥ 0

i.e., exactly the same as p(τ)! This is because the exponential distribution is “memoryless”.

(iii) In view of the last observation above, one has

E(τ1) = 1

(iv) The exponential distribution is a questionable model for this problem because of its memoryless

property. Knowing the machine did not break down up to τ0 = 1 does not change (with this model) the

distribution of the remaining life, which doesn’t seem to be reasonable.

2.

(i) Using integration by parts

E(τ) =

∫ ∞
0

τp(τ) dτ =

√
π

2
a = 1

because a =
√

2/π.

(ii)

p(τ |τ ≥ τ0) =
p(τ)

1− F (τ0)
τ ≥ τ0

Since

F (τ0) =

∫ τ0

0

τ

a2
e−

τ2

2a2 dτ = 1− e−
τ2
0

2a2



p(τ |τ ≥ τ0) =
p(τ)

e−
τ2
0

2a2

=
τ

a2
e−

τ2−τ2
0

2a2 τ ≥ τ0

Then use the transformation τ1 = τ − τ0 to get pτ1(τ1)

pτ1(τ1) = pτ (τ1 + τ0|τ1 + τ0 ≥ τ0) =
τ1 + τ0
a2

e−
(τ1+τ0)2−τ2

0
2a2 τ1 ≥ 0

(iii) We have (using integration by parts)

E(τ1) =

∫ ∞
0

τ1pτ1(τ1) dτ1

=

∫ ∞
0

τ1
τ1 + τ0
a2

e−
(τ1+τ0)2−τ2

0
2a2 dτ1

=
√

2πae
τ2
0

2a2 [1−G(
τ0
a

)]

= 2eπ/4[1−G(
√
π/2)]

≈ 0.4608

where G is the cumulative standard Gaussian distribution.

(iv) The Rayleigh distribution is more reasonable than the exponential one for this problem. Knowing

the machine did not break down up to τ0 = 1 should yield the remaining life shorter than at the initial time.

This fits the real world experience better.

2
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1.

(i) From (1.4.14-18)

var(x|y) = σ2
x − (ρ σxσy)

2(σ2
y)

−1 = (1− ρ2)σ2
x

Thus

ρ = ±1/
√
2

(ii) The smallest achievable var(x|y) is 0 and the values of ρ yield this are ±1.

(iii) In this case x and y are linearly dependent, i.e.,

x = cy

with c > 0 if ρ = 1 and c < 0 if ρ = −1. Note that the actual value of c is irrelevant, only its sign matters.

2.

(i) From (1.4.19-19) one has

e−10a = 0.1

which yields

a = − ln 0.1

10
=

ln 10

10
s−1

(ii) From (14.19-21) one has

S0 = 2aRxx(0) = 2
ln 10

10
5 = ln 10V2/s

(iii) The units of n(t) are the same as those of ẋ, i.e., V/s. Thus the units of its power are (V/s)2 (the

convention in psd is that the square of the waveform is its power, i.e., as if it was a voltage across a unit

resistance). The units of its psd are (V/s)2/Hz=V2/s since Hz=s−1.



engr352/engr352p08s September 13, 2018)

ENGR352 Problem Set 08 SOLUTION

1.

(i) The steady state probability vector will be the solution of the equation (written for convenience in

transposed form)

µ′ = µ′Π

i.e., the eigenvector corresponding to the unity eigenvalue of Π (ICBS that a probability transition matrix,

whose rows sum up to unity, is guaranteed to have a unity eigenvalue).

This yields

µ′(I −Π) = µ′

I −
 0.9 0.1

0.2 0.8

 = µ′

 0.1 −0.1

−0.2 0.2

 = 0

which yields one equation for the elements µi, i = 1, 2 of µ. The other one is

µ1 + µ2 = 1

The solution is

µ = [2/3, 1/3]′

(ii) The ratio of the time this system spends in state 1 vs. in state 2 is

µ1/µ2 = 2/1

2.

(i) The mean is, due to symmetry, x0. The variance of xi is

σ2
i =

∫ x0+ε

x0−ε
(x− x0)2 dx = ε2/3

(ii) What we need is

P{L ∈ [999.905m, 1000.095m]}

Using the Central Limit Theorem,

L ∼ N (Nx0, σ
2
L)

where the s.d. of L is

σL =
√
Nσ2

i =
√

100 · (10−2)2/3 = 0.058m

Thus, the length of the allowed interval for L is on each side of its mean, in units of its s.d. 0.095/0.058=1.64,

and consequently, the above probability is 90% (the 5% upper tail and 5% lower tail are excluded — see

Table 1.5.4-1, last row).
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1. Using Table 1.5.4-1:

(i) [0, 448]

(ii) [346, 457]

(iii) Dividing the above by n/4 = 100 yields the interval [3.46, 4.57]

Relative to E{y400} = 4, the interval is [0.865, 1.1425].

(iv) [724, 880] divided by n/4 = 200 yields [3.62, 4.40].

Relative to E{y800} = 4, the interval is [0.905, 1.10].

(v) (1.1425− 0.865)/(1.10− 0.905) ≈ 1.42 ≈
√
2 =

√
800/400

(vi) The two relative interval lengths are inversely proportional to the corresponding n (this is a conse-

quence of the CLT, which will become clear later in Sec. 5.4).
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1.

(i)

x̂MAP =
100

100 + 400
5 +

400

100 + 400
10 = 9

(ii)

σ2
1 =

100 · 400
100 + 400

= 80

(iii)

p(x|z) = 1√
2π80

e−
(x−9)2

2·80

2.

(i) The likelihood function of a is

p(z|a) = z

a2
e
− z2

2a2

The likelihood equation for a is

d

da

 z

a2
e
− z2

2a2

 = 0

which yields

a = z/
√
2

(ii) The likelihood function of a is

p(z1, . . . , zn|a) =
∏n

i=1 zi
a2

e
−
∑n

i=1 z
2
i

2a2

The likelihood equation for a is

d

da

∏n
i=1 zi
a2

e
−
∑n

i=1 z
2
i

2a2

 = 0

which yields

a =

√∑n
i=1 z

2
i

2
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Problem 2-4 from the text.

1. Let

σ̂2
k

∆
= [σ̂(k, n)]2

∆
=

1

n
f1

Set
d

dn
E[(σ̂2

k − σ2
0)

2] = 0

or

E[(σ̂2
k − σ2

0)f1] = 0

or

E[
1

n
f2

1 ] = E[σ2
0f1] = σ2

0E[f1]

Thus

n =
E[f2

1 ]

E[f1]σ2
0

Following some lengthy derivations and using a Gaussian assumption (for the calculation of the fourth

moment) yields

n =
σ4

0(k
2 − 1)

σ4
0(k − 1)

= k + 1

2. Yes. Reason: the optimal estimator [σ̂(k)]2 in part (1) (with n = k + 1) is biased:

E{[σ̂(k)]2} = k − 1

k + 1
E{·} = k − 1

k + 1
σ2

where {·} is the unbiased sample variance (2.5.3-8).
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Problem 2-12 from the text.

Assuming a 1
100χ

2
100 distribution for the ratio of the sample variance and the CRLB variance, its 95%

probability region is [0.742, 1.30], i.e., it is a perfectly reasonable outcome if this estimator is efficient.

Problem 2-14 from the text.

σ(σ̂ML)2 = σ2
√

2/N

The one-sided 95% probability region about the borderline value should start at 80:

100 − 1.64 · 100
√

2/N = 80

which yields

N =
2 · 1.642

0.22
≈ 135
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1.

(i)

E[z] = z̄ = E[Hx+ w] = HE[x] + E[w] = Hx̄+ 0 = Hx̄

(ii)

Pzz = E[(z − z̄)(z − z̄)′]

= E[(Hx+ w −Hx̄)(Hx+ w −Hx̄)′] = E{[H(x− x̄) + w][H(x− x̄) + w]′}

= E{[H(x− x̄)][H(x− x̄)]′ + ww′] = HE{(x− x̄)(x− x̄)}H ′ + E[w2]

= HPxxH
′ + σ2

w = [1 1]

 1 0.5

0.5 1

 1

1

+ 1 = 4

where the the crossterm in line 3 is not shown because it is zero.

Similarly,

Pxz = E[(x− x̄)(z − z̄)′] = PxxH
′ =

 1.5

1.5


These results are independent of the initial estimate of x.

(iii)

Pxx|z = Pxx − PxzP
−1
zz Pxz

=

 1 0.5

0.5 1

−
 1.5

1.5

 1

4
[1.5 1.5]

=

 1 0.5

0.5 1

−
 0.5625 0.5625

0.5625 0.5625


=

 0.4375 −0.0625

−0.0625 0.4375


(iv) √√√√√

∣∣∣∣∣∣ 1 0.5

0.5 1

∣∣∣∣∣∣ = 0.866

√√√√√
∣∣∣∣∣∣ 0.4375 −0.0625

−0.0625 0.4375

∣∣∣∣∣∣ = 0.442

i.e., a reduction of almost 50%.
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Localization based on range measurements

(i) To obtain the ILS estimator for this problem, linearize the measurement equation around an estimate

x̂

d(x, xSi
) = ‖x− xSi

‖

=
√

(ξ − ξSi
)2 + (η − ηSi

)2 + (ζ − ζSi
)2

≈ d(x̂, xSi) + (∇xd(x, xSi)|x=x̂)
′(x− x̂)

≈ ‖x̂− xSi
‖+ (x̂− xSi

)′(x− x̂)
‖x̂− xSi

‖
∆
= ẑi(x̂) + h(x̂, xSi

)′(x− x̂) i = 1, . . . , 4

where

h(x̂, xSi
)′

∆
=

(x̂− xSi
)′

‖x̂− xSi
‖

Following the j-th iteration of the ILS, the linearized system can be written as

4zi(x̂j)
∆
= zi − ẑi(x̂j) = h(x̂j , xSi

)′(x− x̂j) + wi i = 1, . . . , 4

Using the 4 available measurements, one has equation:

4z(x̂j) = [4z1(x̂j) . . .4z4(x̂j)]
′

=


h(x̂j , xS1

)′

...

h(x̂j , xS4
)′

 (x− x̂j) + w

∆
= H(x̂j)(x− x̂j) + w

where w is the four dimensional vector of the measurement noises.

Thus, using the ILS method, the next estimate x̂j+1 is

x̂j+1 = x̂j + [H(x̂j)
′R−1H(x̂j)]

−1H(x̂j)
′R−14z(x̂j)

where

R = E[ww′] = σ2I

is the measurement noise covariance matrix. Consequently,

x̂j+1 = x̂j + [H(x̂j)
′H(x̂j)]

−1H(x̂j)
′4z(x̂j)



(ii) For this problem’s geometry, the algorithm usually converges after the 3rd iteration. The MSE and

RMSE values obltained from N = 100 runs are shown in the table below.

(iii) The covariance of the estimate is

P = [H(x̂n)
′R−1H(x̂n)]

−1

where n is the last iteration. The diagonal terms of this matrix are shown in the table below under TMSE

(theoretical MSE).

MSE (m2) RMSE (m) TMSE (m2)

x 286 17 307

y 287 17 310

z 429 21 400

From (2.6.3-6), the sample MSE from N runs should be (with 95% probability) within

2
√
2P 2

ii/N ≈ 0.3Pii

of the theoretical value Pii, the diagonal terms of the calculated covariance of the estimate. The above

sample MSEs satisfy this and thus they are statistically compatible.

2
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1.

P−1xx|z = P (k + 1)−1 = P (k)−1 +H ′R(k)−1H

=

 1 0.5

0.5 1

+

 1

1

 1−1 [1 1]

=

 4/3 −2/3

−2/3 4/3

+

 1 1

1 1


=

 7/3 1/3

1/3 7/3



Pxx|z =

 7/3 1/3

1/3 7/3

−1 =

 7/16 −1/16

−1/16 7/16



=

 0.4375 −0.0625

−0.0625 0.4375
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Problem 3-9 from the text.

ȳ = Ax̄1 + Bx̄2

Pyy = AP11A
′ + AP12B

′ + BP21A
′ + BP22B

′

z̄ = Cȳ + Dw̄

Pzz = CPyyC
′ + DPwD

′

Pyz = PyyC
′

The solution is then given by Eqs. (3.3.2-10) and (3.3.2-12) with the above terms.

Problem 3-10 from the text.

Assuming a constant velocity and using LS, Eq. (3.5.2-12) yields

P22 ≈ 642

83
12
1
62

= 8 · 12 · 36 ≈ 3600 = (60 ft/min)2
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Problem 3-11 from the text.

1. Using (3.5.1-19) with k + 1 = n yields for the position variance

σ2 2[2(n− 1) + 3]

(n− 1)n
= 4σ2 n+ 0.5

n(n− 1)

2.
σ2

n

Problem 3-12 from the text.

1.

ȳ1 = µ2 + µ3 ȳ2 = µ2 − µ3

var(y1) = σ2
22 + σ2

33 + 2σ2
23 var(y2) = σ2

22 + σ2
33 − 2σ2

23

cov(x1, y1) = σ2
12 + σ2

13 cov(x1, y2) = σ2
12 − σ2

13

E[x1|y1] = µ1 +
σ2
12 + σ2

13

σ2
22 + σ2

33 + 2σ2
23

(y1 − ȳ1)

var(x1|y1) = σ2
11 −

(σ2
12 + σ2

13)2

σ2
22 + σ2

33 + 2σ2
23

E[x1|y2] = µ1 +
σ2
12 − σ2

13

σ2
22 + σ2

33 − σ2
13

(y2 − ȳ2)

var(x1|y2) = σ2
11 −

(σ2
12 − σ2

13)2

σ2
22 + σ2

33 − σ2
13

The required pdfs are Gaussian with the above moments.



engr352/engr352p18s September 13, 2018)

ENGR352 Problem Set 18 SOLUTION

Problem 4-3 from the text.

1. With k > j, (4.3.3-1) yields

x(k)− x̄(k) =

[
k−1−j∏
i=0

F (k − 1− i)

]
[x(j)− x̄(j)] +

k−1∑
i=j

(·)v(i)

Since v(i) is zero-mean and white,

v(i) ⊥ x(j) or v(i) ⊥ [x(j)− x̄(j)] ∀i ≥ j

it follows that

Vxx(k, j) =

[
k−1−j∏
i=0

F (k − 1− i)

]
Pxx(j) ∀k ≥ j

2. Since, for a stable LTI system, all the eigenvalues of F have magnitude less than 1,

Vxx(k, j)→ 0 for k � j

This means that x(k) and x(j) tend to be uncorrelated, that is, the effect of x(j) (i.e., transient) dies out in

a stable system.

Problem 4-4 from the text.

Equations (4.3.4-10), (4.3.4-13) and the whiteness of v yield

var[x(k)] =
∑
i

∑
j

αk−iαk−jE[(v(i)− v̄(i))(v(j)− v̄(j))′]

=
∑
i

(α2)k−iE[(v(i)− v̄(i))(v(i)− v̄(i))′]

=
1− α2k

1− α2
σ2

1.

y(k) = (1− α)

k∑
i=1

αk−iv(i) = (1− α)x(k)

2.

ȳ(k) = (1− αk)v̄
k→∞−→ v̄

var[y(k)] =
1− α
1 + α

(1− α2k)σ2 k→∞−→ 1− α
1 + α

σ2

3.

z(k) =
1− α
1− αk

x(k) =⇒ z̄(k) = v̄

var[z(k)] =
(1− α)(1− α2k)

(1 + α)(1− αk)2
σ2 k→∞−→ 1− α

1 + α
σ2

Thus y(k) is only an asymptotically unbiased estimator of v̄ while z(k) is an unbiased one. For large k they

have the same variance, i.e., they are practically the same.

4.

Ne =
1

1− α
= 10 =⇒ α = 0.9
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Problem 4-8 from the text.

Since the eigenvalues of this matrix are 0, 0, ±jΩ, use of the interpolating polynomial method is probably

the simplest.

The series expansion method is also simple by noticing that the terms in each element are simple modi-

fication of the expansion of a sin Ωt or cos Ωt.
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1.

(i) The state estimation error x̃(k + 1|k + 1) can be written in terms of the previous prediction error

x̃(k + 1|k) (for simplicity, for time invariant F , H, and W ) as

x̃(k + 1|k + 1)
∆
= x(k + 1)− x̂(k + 1|k + 1)

= x(k + 1)− x̂(k + 1|k)−W [z(k + 1)−Hx̂(k + 1|k)]

= x̃(k + 1|k)−W [Hx(k + 1) + w(k + 1)−Hx̂(k + 1|k)]

= x̃(k + 1|k)−WHx̃(k + 1|k)−Ww(k + 1)

= [I −WH]x̃(k + 1|k)−Ww(k + 1)

Multiplying the above with its transpose and taking its expectation yields (5.2.3-18). The cross term vanishes

due to the whiteness of the (zero-mean) measurement noise. Note that, in the above, the gain W is arbitrary.

(ii) Using in the above

x̃(k + 1|k) ∆
= x(k + 1)− x̂(k + 1|k) = Fx̃(k|k) + v(k)

yields

x̃(k + 1|k + 1) = [I −WH][Fx̃(k|k) + v(k)]−Ww(k + 1)

= [I −WH]Fx̃(k|k) + [I −WH]v(k)−Ww(k + 1)

(iii)

P (k + 1|k + 1) = [I −WH]FP (k|k)F ′[I −WH]′ + [I −WH]FQ(k)F ′[I −WH]′ +WR(k + 1)W ′

(iv) The matrix [I −WH]F should have all its eigenvalues inside the unit circle.
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1. Problem 5-1 from the text.

1. Since the system is completely controllable and observable, there exists a unique P∞ > 0 such that

P∞ = lim
k→∞

P (k|k) = lim
k→∞

P (k + 1|k + 1) =
rf2P∞ + rq

h2f2P∞ + h2q + r

P∞ =
−(r − rf2 + qh2) +

√
(r − rf2 + qh2)2 + 4rqh2f2

2h2f2
> 0

2. Note that the noise standard deviations are σv =
√
q, σw =

√
r.

3. Since

x(0) =
1

h
z(0)− 1

h
w(0)

we have

P (0|0) = E[(x(0)− z(0)/h)2] =
r

h2

Suitable care must be exercised when the first sampling time is zero.

4. For a sample output of one run see Table 1. Note the convergence of the variance. The normalized

state errors and the normalized innovations are, in magnitude, less than 2, most of the time; however, while

the latter are white, the former appear (and are) correlated.

5. P∞ = 0.0951

6. See Table 2 for P (0|0) = 0, and 10. Note that the steady-state value is independent of the initial

variance.

7. Change the initial variance given to the filter and generate new initial estimate with the new variance.

2. Computer Application 5-2 from the text.

1. For ρ = −0.5  3.6843 0.8238

0.8238 1.2866


2. For ρ = 0  6.0218 1.6557

1.6557 1.7032


3. For ρ = 0.5  6.4886 2.2403

2.2403 1.9260


The reason the negative correlation between the measurement errors in position and velocity is the best is

that this counters the positive correlation between the estimation errors in position and velocity due to the

dynamic equation.



2



k P (k|k) for P (0|0) = 0 P (k|k) for P (0|0) = 1 P (k|k) for P (0|0) = 10

1 0.0099 0.5025 0.9092
2 0.0195 0.3388 0.4789
3 0.0287 0.2586 0.3284
4 0.0372 0.2117 0.2528
5 0.0451 0.1815 0.2081
6 0.0522 0.1607 0.1791
7 0.0586 0.1458 0.1590
8 0.0642 0.1348 0.1446
9 0.0691 0.1265 0.1339

10 0.0733 0.1201 0.1258
11 0.0769 0.1151 0.1195
12 0.0799 0.1112 0.1147
13 0.0825 0.1081 0.1109
14 0.0847 0.1056 0.1078
15 0.0865 0.1036 0.1054
16 0.0880 0.1020 0.1035
17 0.0892 0.1008 0.1019
18 0.0903 0.0997 0.1006
19 0.0911 0.0989 0.0996
20 0.0919 0.0982 0.0988
21 0.0924 0.0976 0.0981
22 0.0929 0.0972 0.0976
23 0.0933 0.0968 0.0971
24 0.0936 0.0965 0.0968
25 0.0939 0.0962 0.0965
26 0.0941 0.0960 0.0962
27 0.0943 0.0959 0.0960
28 0.0945 0.0957 0.0959
29 0.0946 0.0956 0.0957
30 0.0947 0.0955 0.0956
31 0.0948 0.0955 0.0955
32 0.0948 0.0954 0.0955
33 0.0949 0.0953 0.0954
34 0.0949 0.0953 0.0953
35 0.0950 0.0953 0.0953
36 0.0950 0.0952 0.0953
37 0.0950 0.0952 0.0952
38 0.0950 0.0952 0.0952
39 0.0951 0.0952 0.0952
40 0.0951 0.0952 0.0952
41 0.0951 0.0952 0.0952
42 0.0951 0.0952 0.0952
43 0.0951 0.0952 0.0952
44 0.0951 0.0951 0.0952
45 0.0951 0.0951 0.0951
46 0.0951 0.0951 0.0951
47 0.0951 0.0951 0.0951
48 0.0951 0.0951 0.0951
49 0.0951 0.0951 0.0951
50 0.0951 0.0951 0.0951

Table 2. Convergence of the Riccati equation from different initial conditions.

3



engr352/engr352p23s September 13, 2018)

ENGR352 Problem Set 23 SOLUTION

Problem 5-14 from the text.

1.

S = diag(5, 16) + diag(4, 9) = diag(9, 25)

NIS = ν′S−1ν ≤ χ2
2(95%) = 6

2.

(a) NIS=2<6, accepted

(b) NIS=8>6, rejected

(c) NIS=13>6, rejected

3. χ2
2(99%) = 9.2

(a) NIS=2<9.2, accepted

(b) NIS=8<9.2, accepted

(c) NIS=13>9.2, rejected

Problem 5-15 from the text.

The LS estimate and covariance of the parameter vector for a constant acceleration model are given in

(3.5.2-15) and (3.5.2-14), respectively, where k is the number of measurements (3 in the current problem).

However, they are for the center point, i.e., i = 2. Using the transformation equations (3.5.3-1)–(3.5.3-3)

with t = T , yields

P (t = T |k = 3) =


1 3

2T
1
T 2

3
2T

13
6T 2

6
T 3

1
T 2

6
T 3

6
T 4

σ2

x̂(t = T |k = 3) =


z(3)

z(1)−4z(2)+3z(3)
2T

z(1)−2z(2)+z(3)
T 2
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Problem 5-16 from the text.

Let

z =

 z1

z2

 = Hx+ w

where, with I denoting the identity matrix of the dimension of x,

H =

 I

I

 w =

 x̃1

x̃2


and

Eww′ = P

Then the likelihood function of x is

p(z|x) = N (z;Hx,P )

The MLE of x is

x̂ = (H ′P−1H)−1H ′P−1z = (P22 − P21)T−1x̂1 + (P11 − P12)T−1x̂2

where the inversion of a partitioned matrix has been used.

T
∆
= P11 − P12 + P22 − P21

and

cov(x̂) = (H ′P−1H)−1 = P22 − [P22 − P21][P11 − P12 + P22 − P21]−1[P22 − P12]

Problem 5-17 from the text.

1. The filter updated state variance is in steady state (from problem 5-1)

P∞ =
−q +

√
q2 + 4rq

2

and the gain is

W∞ = P∞/r =
−q +

√
q2 + 4rq

2r

2. Let

µ = q/r

Then

W∞ =
−µ+

√
µ2 + 4µ

2

3. The filter gain is

W∞f
=
−qf +

√
q2
f + 4rqf

2r



and the equation for the s.s. estimation MSE is

P∞ = (1−W∞f
)2(P∞ + q) +W 2

∞f
r

which yields

P∞ =
(1−W∞f

)2q +W 2
∞f
r

1− (1−W∞f
)2

4.

|1−W∞f
| < 1

2
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Problem 6-1 from the text.

1. If the acceleration ξ̈(k) = v(k) is a zero-mean white Gaussian noise, the velocity ξ̇(k) is then its

integral, i.e., a (discrete-time) Wiener process

ξ̇(k) = ξ̇(0) + T

k−1∑
i=0

v(i)

and, therefore,

ξ̇(k) ∼ N [ξ̇(0), kT 2σ2
v ]

2. The range of the velocity after k sampling periods is

P{ξ̇(k) ∈ [ξ̇(0)− 1.96
√
kTσv, ξ̇(0) + 1.96

√
kTσv]} = 95%

3. The lower bound of the above confidence region is 10 − 2 × 5 = 0. Therefore, this is an acceptable

change and it is not a sign of bias in the random numbers. Thus, while the average change in the velocity

is zero, such a process noise can significantly change it in a given sample trajectory (run).

4. In the third order model the velocity is the integral of a Wiener process and even larger changes can

occur.
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Problem 6-8 from the text.

1. In this problem λ = 2. As in the previous problem, one has

α =
−λ2 +

√
λ4 + 16λ2

8

which yields α = 0.62.

2. They are α and
√
α, respectively.

3. The Joseph form equation for the estimate’s variance P is

P = (1−W )2(P + 1) +W 2

which yields P = 4.3 > r, i.e., no reduction but magnification!

4. |1−W | < 1, i.e., 0 < W < 2.

5. P diverges.

Problem 6-9 from the text.

1.

x̂(k + 1) = (1− α)x̂(k) + αz(k + 1)

x̂(k + 1)− x(k + 1) = (1− α)x̂(k)− x(k) + α[x(k) + w(k + 1)]

−x̃(k + 1) = −(1− α)x̃(k) + αw(k + 1)

The s.s. estimation variance is then

P = (1− α)2P + α2r

P =
α

2− α
r

2. Denoting by xv the state driven by the constant v, one has

xv(k + 1) = xv(k) + v

The estimate of xv in the absence of measurement noise is then

x̂v(k + 1) = (1− α)x̂v(k) + αxv(k + 1)

with error

x̂v(k + 1)− xv(k + 1) = (1− α)x̂v(k)− xv(k)− v + α[xv(k) + v]

−x̃v(k + 1) = −(1− α)x̃v(k)− (1− α)v

b = (1− α)b+ (1− α)v

b =
1− α
α

v

3. By superposition, the MSE is

M = P + b2
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Problem 10-1 from the text.

The estimate of the location of the maximum is

x̂m = f(x1, x2, x3, z1, z2, z3)

with true value

xm = f(x1, x2, x3, y1, y2, y3)

Using a first order expansion one has

x̂m = xm +

3∑
i=1

∂f

∂zi
(zi − yi) = xm + (∇zf)′w

The error in the location of the maximum is in terms of the noises

x̃m = (∇zf)′w

1. To find the expression of x̂m consider the parabolic approximation

z(x) = ax2 + bx+ c

which leads to 
x2

1 x1 1

x2
2 x2 1

x2
3 x3 1



a

b

c

 =


z1

z2

z3


Setting the differential to zero yields

x̂m = − b

2a
=⇒ f = − b

2a

2. The error is, in terms of the noise vector w,

x̃m = (∇zf)′w =
b(∇za)′ − a(∇zb)

′

2a2
w

∆
= u′w

and, thus, the MS error (variance) is

E[x̃2
m] = u′Pu

3. In this case it is convenient to write the parabolic approximation

y = a(x− n)2 + b(x− n) + c

in the neighborhood of x = n. These coefficients, which are different from those in part (1), are obtained

from the equations (obtained by substituting xi into the above equation)

a(−1)2 + b(−1) + c = z1



c = z2

a(1)2 + b(1) + c = z3

as

a = (z1 + z3 − 2z2)/2 b = (z3 − z1)/2

The maximum of the parabola is at

x̂ = n− b

2a
= n+

z3 − z1

2(2z2 − z1 − z3)

∆
= n+

α1

α2

The location of the maximum based on the exact values of the function is

x = n+
y3 − y1

2(2y2 − y1 − y3)

and, using a first order series expansion,

x̂ = x+

3∑
i=1

∂

∂zi

(
α1

α2

)
(zi − yi)

∆
= x+

3∑
i=1

uiwi

where

u1 = − 1

α2
+

2α1

α2
2

u2 = −4α1

α2
2

u3 =
1

α2
+

2α1

α2
2

are the (first order) sensitivity functions of the location of the maximum w.r.t. the observation errors wi.

For the given numbers one has

α1 = 0 a2 = 0.8 x̂ = n

u1 = −1.25 u2 = 0 u3 = 1.25 σ2 = 0.03125

Problem 10-2 from the text.

√
1− α ≈ 1− α

2
=⇒ (100α/2)%

2
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Problem 10-7 from the text.

1.

v̂ =
√
x̂2

3 + x̂2
4

2. Using first order series expansion

ṽ =
x̂3

v̂
x̃3 +

x̂4

v̂
x̃4

∆
= x̃3 cos φ̂+ x̃4 sin φ̂

Eṽ2 = P33(cos φ̂)2 + P44(sin φ̂)2 + P34 sin 2φ̂

3.

θ = 90 − φ = 90 − tan−1 x4

x3

θ̂ = 90 − tan−1 x̂4

x̂3

4. Using first order series expansion

θ̃ = −
[
∂

∂x4
tan−1 x̂4

x̂3

]
x=x̂

x̃4 −
[
∂

∂x3
tan−1 x̂4

x̂3

]
x=x̂

x̃3 =
−x̂3x̃4 + x̂4x̃3

x̂2
3 + x̂2

4

E[θ̃2] =
x̂2

3P44 − 2x̂3x̂4P34 + x̂2
4P33

[x̂2
3 + x̂2

4]2

5.

σθ̃ =

√
E[θ̃2]

180

π

6.

v̂ = 14

Eṽ2 = 1 · 0.5 + 1 · 0.5 + 0.5 · 1 = 2.5 = (1.58)2

θ̂ = 45◦

E[θ̃2] =
100(1 − 1 + 1)

2002
= 0.0025rad2 = (0.05rad)2 ≈ (3◦)2

Problem 10-8 from the text.

1. The true range is

r =
√
R2 − h2



Using a first order series expansion, the error in r is (approximately) zero mean and with variance

σ2
r ≈

[
∂r

∂R

]2

σ2
R +

[
∂r

∂h

]2

σ2
h

The partials, to be evaluated at the measured/assumed values, are

∂r

∂R
=
R

r

∂r

∂h
= − h

r

yield

σ2
r ≈

[
R

r

]2

σ2
R +

[
h

r

]2

σ2
h

2.

r ≈ R = 105 h/r = 1/50

σ2
r ≈ 104 +

[
1

50

]2

106 ≈ 104

3. The altitude error at this range has negligible effect. For R = 104 one has h/r = 1/5 and

σ2
r ≈ 104 +

[
1

5

]2

106 ≈ 5 · 104

2
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Problem 10-10 from the text.

1.

x− x1 =
√
r2 − y21

dx

dr
=

r√
r2 − y21

=

√
y21 + (x0 − x1)2

|x0 − x1|

2. GDOP ≈ 105/104 = 10

3. GDOP ≈ 106/106 = 1

4. Let σr = 1. Then

p(r|p) = N (r;ψ(p), I)

∇p ln p(r|p) = −∇pψ(p,X)′[r− ψ(p,X)]

The FIM is then

J = E[∇p ln p(r|p)][∇p ln p(r|p)]′ = ∇pψ(p,X)′[∇pψ(p,X)′]′ =

(
∂ψ

∂p

)′
∂ψ

∂p

where ∂ψ
∂p is the Jacobian of the measurement function.

Thus the covariance of the estimate is (asuming efficiency)

Pp = J−1

and the RMS position error is

RMS(p̃) =
√

tr(Pp) =

√√√√√tr


[(

∂ψ

∂p

)′
∂ψ

∂p

]−1
The components of ψ are

ψi =
√

(p− xi)′(p− xi)

∇pψi = (p− xi)/ψi

∇pψ
′ = [∇pψ1, . . . ,∇pψn]

The FIM is

J =

n∑
i=1

(∇pψi)
′
(∇pψi) =

n∑
i=1

(p− xi)(p− xi)
′/ψ2

i

5.

J =


 1010 −109

−109 1010

+

 1010 109

109 1010

 (1010 + 108)−1



J−1 ≈

 50 0

0 0.5


√

tr(J−1) ≈
√

50 ≈ 7

Problem 10-11 from the text.

1.

along =
a′v

‖v‖2
v =

ẍẋ+ ÿẏ

ẋ2 + ẏ2
[ẋ ẏ]′

‖along‖ =
ẍẋ+ ÿẏ√
ẋ2 + ẏ2

2.

alat = a− along

‖alat‖ =
√
‖a‖2 − ‖along‖2 =

|ẍẋ− ÿẏ|√
ẋ2 + ẏ2

3.

ω =
‖alat‖
‖v‖

=
|ẍẋ− ÿẏ|
ẋ2 + ẏ2

4.

σ2
ω = (∂ω/∂x)P (∂ω/∂x)′

2
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Problem 11-2 from the text.

This problem calls for the use of the mixture equations

1.

x̂ = E[x|z] = E[x|z, α = 1]p1 + E[x|z, α = 0]p2

where, from Subsections 2.3.2 and 2.4.3,

E[x|z, α = 1] =
x0σ

−2
0 + zσ−2

1

σ−2
0 + σ−2

1

∆
= x̂1

E[x|z, α = 0] =
x0σ

−2
0 + zσ−2

2

σ−2
0 + σ−2

2

∆
= x̂2

2. From Subsection 2.4.3

var[x|z] = var[x|z, α = 1]p1 + var[x|z, α = 0]p2 + p1(x̂1 − x̂)2 + p2(x̂2 − x̂)2

= σ2
1p1 + σ2

2p2 + p1(x̂1 − x̂)2 + p2(x̂2 − x̂)2



engr352/engr352p33s September 17, 2018)

ENGR352 Problem Set 33 SOLUTION

Problem 11-6 from the text.

The pmf of the sojourn time in state i is

P{τi = k} = (pii)
k−1(1− pii) k = 1, 2, . . .

E[τi] =

∞∑
k=1

k(pii)
k−1(1− pii)

= (1− pii)
∞∑
k=0

k(pii)
k−1

= (1− pii)
d

dpii

[ ∞∑
k=0

(pii)
k

]
= (1− pii)

d

dpii

[
1

1− pii

]
Problem 11-7 from the text.

1.

Π =

 p1 1− p1
p1 1− p1


2.

τ1 =
1

1− p1

p1 =
τ1 − 1

τ1

τ2 =
1

1− p2
=

1

p1
=

τ1
τ1 − 1
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Problem 11-9 from the text.

(i) To obtain the IMM estimator, define the following four possible models based on the same WNA state

model, but with different measurement equations, corresponding to the normal mode (designated as mode

1) and the failure modes (designated as modes 2,3,4):

H1 =

 1 0

0 1



H2 =

 0 0

0 1


H3 =

 1 0

0 0


H4 =

 0 0

0 0


The Markov chain transition matrix entries are based on the duration of the cycles in the failure sequence.

Using the above subscripts for the modes, the probability p11 is taken (this is subjective, other similar values

can be also used) as 0.79 (approximation of 10/13); the jump probability to each failure mode (assuming

them equal) in then 1/13≈0.07. The probabilities of staying in a failure mode, pii, i = 2, 3, 4, are taken

as 0.9 (approximation of 10/11); the probabilities of jumping from each failure mode to the normal mode

are taken as 2/3 of the remaining probability mass (0.06) and the probabilities of going into another failure

mode are equal (0.02). Then

P =


.79 .07 .07 .07

.06 .9 .02 .02

.06 .02 .9 .02

.06 .02 .02 .9


Note: the use of Dynaest for this problem is limited since it allows only up to 5 “legs”, rather that 7 as are

required in this problem. Hence the data for the problem was externally generated, and then filtered using

Dynaest.

(ii) Based on 100 runs using the same failure sequence and independent noises and initial estimates for

each run, the average number of samples needed to detect a mode change is 1, for both scenarios. The

criterion to define a change of mode is that the mode probability exceeds the value 0.5. If instead of 0.5, we

change this threshold to 0.8, then the number of samples needed to detect a mode change varies in scenario



A to about 2 samples (and as an extra drawback, the normal mode does not exceed this higher threshold,

so it is not detected), while for scenario B it is still 1 sample. The cause of this difference is based on the

fact that scenario A is just a random walk, so the position and velocity wander around zero, making it more

difficult to detect the lack of some of these measuremente in a failure mode, but as the position variance

grows in time, the later failures will be easier to detect than the earlier ones. On the other hand, scenario

B represents a constant velocity model, for which the position grows linearly (plus noise) and the velocity is

around 10, so in case of failure, the absence of any measurement is easily detected.

Figure 1: Mode probabilities for Scenario A.

Figure 2: Mode probabilities for Scenario B.

2
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Localization based on range measurements

(i) To obtain the ILS estimator, linearize the nonlinear part of the measurement equation around an

estimate x̂

h(x, b, xSi
) = d(x, xSi

) + b

= ‖x− xSi‖+ b

=
√

(ξ − ξSi
)2 + (η − ηSi

)2 + (ζ − ζSi
)2 + b

≈ d(x̂, xSi) + (∇xd(x, xSi)|x=x̂)
′(x− x̂) + b

= d(x̂, xSi
) + b̂+ (∇xd(x, xSi

)|x=x̂)
′(x− x̂) + b− b̂

= h(x̂, b̂, xSi
) + dx(x̂, xSi

)′(x− x̂) + b− b̂ i = 1, . . . , 6

where

dx(x̂, xSi
)′

∆
= (∇xd(x, xSi

)|x=x̂)
′ =

(x̂− xSi
)′

‖x̂− xSi‖
Let

ẑi(x̂, b̂)
∆
= h(x̂, b̂, xSi

)

= ‖x̂− xSi
‖+ b̂

Then

zi = h(x, b, xSi) + wi

= h(x̂, b̂, xSi
) + dx(x̂, xSi

)′(x− x̂) + b− b̂+ wi

= ẑi(x̂, b̂) + dx(x̂, xSi)
′(x− x̂) + b− b̂+ wi

= ẑi(x̂, b̂) + [dx(x̂, xSi
)′ 1]

 x− x̂

b− b̂

+ wi i = 1, . . . , 6

Following the j-th iteration of the ILS, the linearized system can be written as

4zi(x̂j)
∆
= zi − ẑi(x̂j) = [dx(x̂j , xSi

)′ 1]

 x− x̂j
b− b̂j

+ wi i = 1, . . . , 6

Using all the available measurements, one has equation:

4z(x̂j) = [4z1(x̂j) . . .4z6(x̂j)]
′

=


dx(x̂j , xS1

)′ 1
...

dx(x̂j , xS6
)′ 1


 x− x̂j

b− b̂j

+ w



=


dx(x̂j , xS1

)′ 1
...

dx(x̂j , xS6
)′ 1

 (x− x̂j) + w

∆
= H(x̂j)(x− x̂j) + w

where w is the 6-dimensional stacked vector of the measurement noises and

H(x̂j)
∆
=


dx(x̂j , xS1

)′ 1
...

dx(x̂j , xS6
)′ 1


is the augmented measurement matrix.

Thus, using the ILS method, the next estimate x̂j+1 follows from

x̂j+1 − x̂j
∆
=

 x̂j+1 − x̂j
b̂j+1 − b̂j


= [H(x̂j)

′R−1H(x̂j)]
−1H(x̂j)

′R−14z(x̂j)

where

R = E[ww′] = σ2I

is the measurement noise covariance matrix.

The recursion for the ILS is then

x̂j+1 = x̂j + [H(x̂j)
′R−1H(x̂j)]

−1H(x̂j)
′R−14z(x̂j)

Since R is proportional to an identity matrix

x̂j+1 = x̂j + [H(x̂j)
′H(x̂j)]

−1H(x̂j)
′4z(x̂j)

(ii) For this problem’s geometry, the algorithm usually converges after the 3rd iteration. The MSE and

RMSE values obltained from N = 100 runs are shown in Table 1 below.

(iii) The covariance of the estimate is

P = [H(x̂n)
′R−1H(x̂n)]

−1

where n is the last iteration. The diagonal terms of this matrix are shown in Table 1 under TMSE (theoretical

MSE).

From (2.6.3-6), the sample MSE from N runs should be (with 95% probability) within

2
√
2P 2

ii/N ≈ 0.3Pii

i.e., within 30% of the corresponding theoretical values Pii, the diagonal terms of the calculated covariance

of the estimate. The sample MSEs in Table 1 satisfy this and thus they are statistically compatible.

2



MSE (m2) RMSE (m) TMSE (m2)

x 59 7.7 51

y 50 7.1 50

z 140 11.8 38

b 30 5.5 38

Table 1: Results for satellites 1–6.

(iv)

RMSEhoriz =
√
P11 + P22 =

√
51 + 50 = 10m

HDOP =

√
P11 + P22

σw
=

10

10
= 1

VDOP =

√
P33

σw
=

√
38

10
= 0.6

(v) The results are shown in Table 2.

MSE (m2) RMSE (m) TMSE (m2)

x 82 9 72

y 82 9 70

z 4866 70 5307

b 118 10.9 125

Table 2: Results for satellites 2–5.

The sample MSEs in Table 2 are within 30% of the corresponding theoretical values Pii, the diagonal

terms of the calculated covariance of the estimate, and thus they are statistically compatible.

RMSEhoriz =
√
P11 + P22 = 12m

HDOP =

√
P11 + P22

σw
=

12

10
= 1.2

VDOP =

√
P33

σw
=

√
5307

10
= 7.2

The increase in the VDOP is due to the lack of the high orbit satellite — the altitude has to be estimated from

medium orbit satellites, which have a poor geometry for the altitude, yielding a (somewhat) ill-conditioned

estimate of z.

3
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(i)

λ = 0.25 · 4/10 = 0.1

For such a low value of λ, one can use (6.5.3-29)–(6.5.3-30)

α ≈
√

2λ

β ≈ λ

The s.s. covariance of the filtered state is

P̄ =

 ασ2
w

β
T σ

2
w

β
T σ

2
w

β
T 2

α−β/2
1−α σ2

w

 =

 31.62 5

5 0.97


(ii)

Pxy = P̄C ′

Pyy = CP̄C ′ + σ2
e

x̂ = x̄+ PxyP
−1
yy (y − Cx̄)

P̂ = P̄ − PxyP−1yy P
′
xy

(iii)

P̂ =

 11.78 1.76

1.76 0.45


(iv)

P̂ =

 16.73 2.75

2.75 0.63


(v) The first case. This is due to the fact that the two state components (position and velocity) have

positively correlated errors in P̄ while the measurement of their sum “hides” errors of opposite sign in these

two variables (if one is larger and the other is smaller by the same quantity, this is not “seen” in such a

measurement), i.e., the errors will have negative correlation. The positive correlation from the prior P̄ and

the negative correlation from the external measurement cancel (partially) each other, yielding smaller final

errors.
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