Category Archives: News

Portable Microscope Makes Field Diagnosis Possible

Siddharth Rawat, left, a Ph.D. student, and Bahram Javidi, Board of Trustees Distinguished Professor of Electrical and Computer Engineering, operate a prototype device to examine blood samples for diseases. The portable holographic field microscope offers medical professionals a fast and reliable tool for the identification of diseased cells. (Peter Morenus/UConn Photo)

A portable holographic field microscope developed by UConn optical engineers could provide medical professionals with a fast and reliable new tool for the identification of diseased cells and other biological specimens.

The device, featured in a recent paper published by Applied Optics, uses the latest in digital camera sensor technology, advanced optical engineering, computational algorithms, and statistical analysis to provide rapid automated identification of diseased cells.

One potential field application for the microscope is helping medical workers identify patients with malaria in remote areas of Africa and Asia where the disease is endemic.

Quick and accurate detection of malaria is critical when it comes to treating patients and preventing outbreaks of the mosquito-borne disease, which infected more than 200 million people worldwide in 2015, according to the Centers for Disease Control. Laboratory analysis of a blood sample remains the gold standard for confirming a malaria diagnosis.  Yet access to trained technicians and necessary equipment can be difficult and unreliable in those regions.

The microscope’s potential applications go far beyond the field diagnosis of malaria. The detailed holograms generated by the instrument also can be used in hospitals and other clinical settings for rapid analysis of cell morphology and cell physiology associated with cancer, hepatitis, HIV, sickle cell disease, heart disease, and other illnesses, the developers say.

In checking for the presence of disease, most hospitals currently rely on dedicated laboratories that conduct various tests for cell analysis and identification. But that approach is time consuming, expensive, and labor intensive. It also has to be done by skilled technicians working with the right equipment.

“Our optical instrument cuts down the time it takes to process this information from days to minutes,” says Bahram Javidi, Board of Trustees Distinguished Professor in the Department of Electrical and Computer Engineering and the microscope’s senior developer. “And people running the tests don’t have to be experts, because the algorithms will determine if a result is positive or negative.”

The research team consulted with hematologists, and the algorithms used with the instrument are able to compare a sample against the known features of healthy cells and the known features of diseased cells in order to make proper identification. “It’s all done very quickly,” Javidi says.

How the Device Works

When it comes to identifying patients with malaria, here’s how the device works: A thin smear from a patient’s blood sample is placed on a glass side, which is put under the microscope for analysis. The sample is exposed to a monochromatic light beam generated by a laser diode or other light source. Special components and optical technologies inside the microscope split the light beam into two beams in order to record a digital hologram of the red blood cells in the sample. An image sensor, such as a digital webcam or cell phone camera, connected to the 3-D microscope captures the hologram.  From there, the captured data can be transferred to a laptop computer or offsite laboratory database via the internet. Loaded with dedicated algorithms, the computer or mobile device hardware reconstructs a 3-D profile of the cell and measures the interaction of light with the cell under inspection. Any diseased cells are identified using computer pattern recognition software and statistical analysis.

Quantitative phase profiles of healthy red blood cells (top row) and malaria infected cells (bottom row). (Holographic microscope image courtesy of Bahram Javidi)

Red blood cells infected with the malaria-causing Plasmodium parasite exhibit different properties than healthy blood cells when light passes through them, Javidi says.

“Light behaves differently when it passes through a healthy cell compared to when it passes through a diseased cell,” Javidi says. “Today’s advanced sensors can detect those subtle differences, and it is those nanoscale variations that we are able to measure with this microscope.”

Conventional light microscopes only record the projected image intensity of an object, and have limited capability for visualizing the detailed quantitative characterizations of cells. The digital holograms acquired by UConn’s 3-D microscope, on the other hand, capture unique micro and nanoscale structural features of individual cells with great detail and clarity. Those enhanced images allow medical professionals and researchers to measure an individual cell’s thickness, volume, surface, and dry mass, as well as other structural and physiological changes in a cell or groups of cells over time – all of which can assist in disease identification, treatment, and research. For instance, the device could help researchers see whether new drugs impact cells positively or negatively during clinical trials.

The techniques associated with the holographic microscope also are non-invasive, highlighting its potential use for long-term quantitative analysis of living cells.

Conventional methods of testing blood samples for disease frequently involve labeling, which means the sample is treated with a chemical agent to assist with identification. In the case of malaria, red blood cells are usually treated with a Giemsa stain that reacts to proteins produced by malaria-carrying parasites and thus identifies them. But introducing a chemical into a live cell can change its behavior or damage it.

“If you’re doing an in vitro inspection of stem cells, for instance, and you introduce a chemical agent, you risk damaging those cells. And you can’t do that, because you may want to introduce those cells into the human body at some point,” Javidi says. “Our instrument doesn’t rely on labeling, and therefore avoids that problem.” 

Ph.D. students Tim O’Connor ’17 (ENG), left, Siddharth Rawat, and Adam Markman ’11 (ENG) operate a prototype device to examine blood samples for diseases at the Javidi lab in the Information Technologies Engineering Building. (Peter Morenus/UConn Photo)

The holographic microscope was developed in UConn’s new Multidimensional Optical Sensing & Imaging Systems or MOSIS lab, where Javidi serves as director. The MOSIS lab integrates optics, photonics, and computational algorithms and systems to advance the science and engineering of imaging from nano to macro scales.

A comprehensive report on the MOSIS lab’s work with 3-D optical imaging for medical diagnostics was published last year in Proccedings of the IEEE, the top-ranked journal for electrical and electronics engineering. Joining Javidi in this research are graduate students Adam Markman, Siddharth Rawat, Satoru Komatsu, and Tim O’Connor from UConn; and Arun Anand, an applied optics specialist with Maharaja Sayajirao University of Baroda in Vadodara, India.

The microscope research is supported by Nikon and the National Science Foundation (ECCS 1545687). Students are supported by the U.S. Department of Education, GE, and Canon fellowships. Other sponsors that have supported Javidi’s broader research work and the MOSIS lab over the years include the Defense Advanced Research Projects Agency or DARPA, the U.S. Airforce Research Lab, the U.S. Army, the Office of Naval Research, Samsung, Honeywell, and Lockheed Martin. He has collaborated with colleagues from numerous universities and industries around the world during his time at UConn, including research facilities in Japan, Korea, China, India, Germany, England, Italy, Switzerland, and Spain, among other countries.

Javidi is working with colleagues at UConn Health, including medical oncology and hematology specialist Dr. Biree Andemariam and her staff, for other medical applications. UConn’s tech commercialization office has been involved in discussing potential marketing opportunities for the portable digital microscope. A prototype of the microscope used for initial tests was assembled using 3-D printing technologies, lowering its production costs.


Original from UConn Today, Colin Poitras.

Navy Using New UConn Software to Improve Navigation

The Navy is using new software developed by UConn engineering professor Krishna Pattipati to vastly improve the ability to route ships through unpredictable situations.

Major research discoveries generate news headlines. But a research undertaking by one University of Connecticut engineering lab seeks to forestall some headlines of a different kind.

The loss of life because of weather events, as happened on Oct. 1, 2015 when cargo ship El Faro sank with its 33-member crew in Hurricane Joaquin, is one example. Transcripts released by the National Transportation Safety Board showed an increasingly anxious and panicked crew as the 790-foot vessel sailed into the raging storm two years ago.

Software developed by Krishna Pattipati, UTC Professor in Systems Engineering at UConn and his research team, in collaboration with the U.S. Naval Research Laboratory-Monterey, may go a long way toward avoiding such tragedies.

The prototype, named TMPLAR (Tool for Multi-objective Planning and Asset Routing), is now being used by the Navy to vastly improve the ability of ships to reroute through unpredictable weather. It is the type of technology transition that the new National Institute for Undersea Vehicle Technology based at UConn Avery Point, is now able to foster.

Screenshot of a requested ship transit from San Diego, California, toward Alaska. The black line is the suggested route the Navy navigator is given to accept or reject and send on as directions to a ship’s captain. The numbered red circles are ‘waypoints’ along the route, with the starting point labeled ‘0’. These waypoints divide up a possibly long voyage and keep the ship’s path in check.

Created by Pattipati and electrical and computer engineering graduate students David Sidoti, Vinod Avvari, Adam Bienkowski, and Lingyi Zhang, and undergraduate students Matthew Macesker and Michelle Voong, TMPLAR is still in development, but it has already been fully integrated with the Navy’s meteorology and oceanographic weather forecasts.

Members of the UConn team meet weekly with Navy officials, via teleconference, to discuss project updates and receive  feedback.

“Their progress is fast,” says Sidoti. “Frankly, it’s kept us on our toes as we try to manage both our academic responsibilities here at UConn while enhancing and updating the software.”

TMPLAR is like a much more complex version of Google Maps, because it will be applied to ships and submarines, where there is no underlying network of roadways to navigate.

In Google Maps, a user typically seeks to maximize the average speed of travel between start and end locations to get to a destination in the shortest amount of time, hence the route may favor highways instead of back roads.

Pattipati’s team is now approaching problems with upwards of 17 or more objectives, which may change depending on the vehicle and the conditions.

The algorithms take into account obstacles such as ocean depth, undersea pipelines, cables, oil rigs, for example. And they factor in multiple user objectives, whether to traverse to an area to minimize travel time, maximize fuel efficiency given the predicted weather, accomplish training objectives, or maximize operational endurance.

“The tool guarantees safe travel from any point in the ocean, above, on, or below its surface, while making choices en route that optimize fuel consumption and cater to any set of objectives of the operator,” says Sidoti. “Using special clustering techniques, the tool’s algorithms have even been applied to finding low-risk routes that avoid storms or hurricanes.”

The next step for TMPLAR is programming the tool for use by aircraft, such as drones.

Last month, Pattipati and Sidoti traveled to San Diego to demonstrate the capabilities of the software to the Space and Naval Warfare Systems Center Pacific. Their algorithim is now going to be integrated with a tool for aircraft carrier strike group planning.

The lab first published details about the software last year in the journal IEEE, the world’s largest professional organization for the advancement of technology. Avvari, one of the graduate students, will detail some of the enhancements that have been made since then at an upcoming professional conference.

And, as the software transitions to operational settings, the team is looking to speed up the capabilities to output smart weather-informed route recommendations in less than a second. Adding neural network modules to TMPLAR is another new horizon; artificial intelligence would help condense solutions so it is less overwhelming to a user, says Sidoti.

When he reviewed the factors faced by the crew of El Faro using TMPLAR software, Sidoti was able to find safe routes for the ship that involved waiting at waypoints and varying the ship’s speed in order to avoid unsafe environmental conditions, while also reducing costs of the route.

The Coast Guard’s report on the tragedy – released just a month ago – said the captain misjudged the strength of Hurricane Joaquin and should have changed the El Faro’s course.

Sidoti found up to eight possible safe routes using TMPLAR. That’s the sort of information he hopes other captains will have.

Recently, the team received notification that the software was demo’ed to onboard ship navigators who were interested to the point that they requested the ability to use it in order to plan and test it on a real-world deployment.

Funding for this research is supported by the U.S. Office of Naval Research under contracts #N00014-16-1-2036 and #N00014-12-1-0238; by the Naval Research Laboratory under contract #N00173-16-1-G905; and by the Department of Defense High Performance Computing Modernization Program under subproject contract #HPCM034125HQU.


Original from UConn Today, Kristen Cole.

Award-winning Paper Questions ECG As Secure Biometric

A paper from UConn fourth year PhD student Nima Karimian has won the best student paper award at the recent IJCB 2017 conference in Denver.

The Conference

The International Joint Conference on Biometrics (IJCB 2017) combines two major biometrics research annual conferences, the Biometrics Theory, Applications and Systems (BTAS) conference and the International Conference on Biometrics (ICB). The blending of these two conferences in 2017 is through special agreement between the IEEE Biometrics Council and the IAPR TC-4, and presents an exciting event for the entire worldwide biometrics research community.

The Paper

The paper, “On the Vulnerability of ECG Verification to Online Presentation Attacks,” examined the use of Electrocardiogram (ECG) as a secure biometric modality. ECG has long been regarded as a biometric modality which is impractical to copy, clone, or spoof. However, it was recently shown that an ECG signal can be replayed from arbitrary waveform generators, computer sound cards, or off-the-shelf audio players. The award-winning paper is one of the first in the field to seriously question the security of ECG verification, and goes a long way towards debunking the assumption of its security.

The paper developed a novel presentation attack where a short template of the victim’s ECG is captured by an attacker and used to map the attacker’s ECG into the victim’s, which can then be provided to the sensor using one of the above sources. The authors’ approach involved exploiting ECG models, characterizing the differences between ECG signals, and developing mapping functions that transform any ECG into one that closely matches an authentic user’s ECG. Their proposed approach, which can operate online or on-the-fly, is compared with a more ideal offline scenario where the attacker has more time and resources. In the experiments, the offline approach achieved average success rates of 97.43% and 94.17% for non-fiducial and fiducial based ECG authentication. In the online scenario, the performance is degraded by 5.65% for non-fiducial based authentication, but is nearly unaffected for fiducial authentication.

The work was supported by US Army Research Office (ARO) under award number W911NF16-1-0321.

Teaching Robots to Think

Original Author: Colin Poitras – UConn Communications – September 13, 2017

Ashwin Dani, assistant professor of electrical and computer engineering, demonstrates how the robot can be given a simple task which can be repeated. Sept. 7, 2017. (Sean Flynn/UConn Photo)

In a research building in the heart of UConn’s Storrs campus, assistant professor Ashwin Dani is teaching a life-size industrial robot how to think.

Here, on a recent day inside the University’s Robotics and Controls Lab, Dani and a small team of graduate students are showing the humanoid bot how to assemble a simple desk drawer.

The “eyes” on the robot’s face screen look on as two students build the wooden drawer, reaching for different tools on a tabletop as they work together to complete the task.

The robot may not appear intently engaged. But it isn’t missing a thing – or at least that’s what the scientists hope. For inside the robot’s circuitry, its processors are capturing and cataloging all of the humans’ movements through an advanced camera lens and motion sensors embedded into his metallic frame.

Ashwin Dani, assistant professor of electrical and computer engineering, is developing algorithms and software for robotic manipulation, to improve robots’ interaction with humans. (Sean Flynn/UConn Photo)

Ultimately, the UConn scientists hope to develop software that will teach industrial robots how to use their sensory inputs to quickly “learn” the various steps for a manufacturing task – such as assembling a drawer or a circuit board – simply by watching their human counterparts do it first.

“We’re trying to move toward human intelligence,” says Dani, the lab’s director and a faculty member in the School of Engineering. “We’re still far from what we want to achieve, but we’re definitely making robots smarter.”

To further enhance robotic intelligence, the UConn team is also working on a series of complex algorithms that will serve as an artificial neural network for the machines, helping robots apply what they see and learn so they can one day assist humans at their jobs, such as assembling pieces of furniture or installing parts on a factory floor. If the process works as intended, these bots, in time, will know an assembly sequence so well, they will be able to anticipate their human partner’s needs and pick up the right tools without being asked – even if the tools are not in the same location as they were when the robots were trained.

This kind of futuristic human-robot interaction – called collaborative robotics – is transforming manufacturing. Industrial robots like the one in Dani’s lab already exist. Although currently, engineers must write intricate computer code for all of the robot’s individual movements or manually adjust the robot’s limbs at each step in a process to program it to perform. Teaching industrial robots to learn manufacturing techniques simply by observing could reduce to minutes a process that currently can take engineers days.

From left back row, Ph.D. students Iman Salehi, Harish Ravichandar, Kyle Hunte, Gang Yao, and seated, Ashwin Dani, assistant professor of electrical and computer engineering. (Sean Flynn/UConn Photo)

“Here at UConn, we’re developing algorithms that are designed to make robot programming easier and more adaptable,” says Dani. “We are essentially building software that allows a robot to watch these different steps and, through the algorithms we’ve developed, predict what will happen next. If the robot sees the first two or three steps, it can tell us what the next 10 steps are. At that point, it’s basically thinking on its own.”

In recognition of this transformative research, UConn’s Robotics and Controls Lab was recently chosen as one of 40 academic or academic-affiliated research labs supporting the U.S. government’s newly created Advanced Robotics for Manufacturing Institute or ARM. One of the collaborative’s primary goals is to advance robotics and artificial intelligence to maintain American manufacturing competitiveness in the global economy.

“There is a huge need for collaborative robotics in industry,” says Dani. “With advances in artificial intelligence, lots of major companies like United Technologies, Boeing, BMW, and many small and mid-size manufacturers, are moving in this direction.”

The United Technologies Research CenterUTC Aerospace Systems, and ABB US Corporate Research – a leading international supplier of industrial robots and robot software – are also representing Connecticut as part of the new ARM Institute. The institute is led by American Robotics Inc., a nonprofit associated with Carnegie Mellon University.

Connecticut’s and UConn’s contribution to the initiative will be targeted toward advancing robotics in the aerospace and shipbuilding industries, where intelligent, adaptable robots are more in demand because of the industries’ specialized needs.

Joining Dani on the ARM project are UConn Board of Trustees Distinguished Professor Krishna Pattipati, the University’s UTC Professor in Systems Engineering and an expert in smart manufacturing; and assistant professor Liang Zhang, an expert in production systems engineering.

“Robotics, with wide-ranging applications in manufacturing and defense, is a relatively new thrust area for the Department of Electrical and Computer Engineering,” says Rajeev Bansal, professor and head of UConn’s electrical and computer engineering department. “Interestingly, our first two faculty hires in the field received their doctorates in mechanical engineering, reflecting the interdisciplinary nature of robotics. With the establishment of the new national Advanced Robotics Manufacturing Institute, both UConn and the ECE department are poised to play a leadership role in this exciting field.”

The aerospace, automotive, and electronics industries are expected to represent 75 percent of all robots used in the country by 2025. One of the goals of the ARM initiative is to increase small manufacturers’ use of robots by 500 percent.

Industrial robots have come a long way since they were first introduced, says Dani, who has worked with some of the country’s leading researchers in learning and adoptive control, and robotics at the University of Florida (Warren Dixon) and the University of Illinois at Urbana-Champaign (Seth Hutchinson and Soon-Jo Chung). Many of the first factory robots were blind, rudimentary machines that were kept in cages and considered a potential danger to workers as their powerful hydraulic arms whipped back and forth on the assembly line.

Today’s advanced industrial robots are designed to be human-friendly. High-end cameras and elaborate motion sensors allow these robots to “see” and “sense” movement in their environment. Some manufacturers, like Boeing and BMW, already have robots and humans working side-by-side.

Of course, one of the biggest concerns within collaborative robotics is safety.

In response to those concerns, Dani’s team is developing algorithms that will allow industrial robots to quickly process what they see and adjust their movements accordingly when unexpected obstacles – like a human hand – get in their way.

“Traditional robots were very heavy, moved very fast, and were very dangerous,” says Dani. “They were made to do a very specific task, like pick up an object and move it from here to there. But with recent advances in artificial intelligence, machine learning, and improvements in cameras and sensors, working in close proximity with robots is becoming more and more possible.”

Dani acknowledges the obstacles in his field are formidable. Even with advanced optics, smart industrial robots need to be taught how to distinguish a metal rod from a flexible piece of wiring, and to understand the different physics inherent in each.

Movements that humans take for granted are huge engineering challenges in Dani’s lab. For instance: Inserting a metal rod into a pre-drilled hole is relatively easy. Knowing how to pick up a flexible cable and plug it into a receptacle is another challenge altogether. If the robot grabs the cable too far away from the plug, it will likely flex and bend. Even if the robot grabs the cable properly, it must not only bring the plug to the receptacle but also make sure the plug is oriented properly so it matches the receptacle precisely.

“Perception is always a challenging problem in robotics,” says Dani. “In artificial intelligence, we are essentially teaching the robot to process the different physical phenomena it observes, make sense out of what it sees, and then make the appropriate response.”

Research in UConn’s Robotics and Controls Lab is supported by funding from the U.S. Department of Defense and the UTC Institute of Advanced Systems Engineering. More detailed information about this research being conducted at UConn, including peer-reviewed article citations documenting the research, can be found here. Dani and graduate student Harish Ravichandar also have two patents pending on aspects of this research: “Early Prediction of an Intention of a User’s Actions,” Serial #15/659,827, and “Skill Transfer From a Person to a Robot,” Serial #15/659,881.

Embedded System Competition Award


A UConn team of students competed in a MITRE-sponsored embedded systems security capture the flag competition this semester and got first place. The team was led by UG ECE students Brian Marquis and Patrick Dunham with grad student Chenglu Jin and two CSE UG students.

UConn Chapter of HKN wins the Outstanding Chapter Award (2015-2016)

The IEEE-HKN Board of Governors has conferred on the UConn Chapter of HKN (Eta Kappa Nu: the electrical engineering honor society) the 2015-2016 IEEE-HKN Outstanding Chapter Award. This award is presented to IEEE-HKN chapters in recognition of excellence in their chapter administration and programs. Recipients are selected on the basis of their annual chapter report. Winning chapter reports not only showcase their chapter’s activities in an individualized manner, they provided multiple views and instances of their work, which really brought their chapter’s activities to life. Of critical concern to the Outstanding Chapter Awards evaluation committee in judging a chapter are activities to: improve professional development; raise instructional and institutional standards; encourage scholarship and creativity; provide a public service, and generally further the established 

goals of IEEE-HKN.


The UConn Chapter is one of 21 chapters selected for their outstanding performance and the value they bring to their members, peers, and university.

UConn Named to Advanced Robotics Manufacturing Institute

The new national initiative aims to increase small manufacturers’ use of robots by 500 percent. Researchers at UConn will focus on the aerospace and shipbuilding industries. (Getty Images)

The University of Connecticut is part of a new national institute designed to advance robotics manufacturing and maintain America’s global competitiveness in that arena. UConn researchers will help develop new sensing, software, artificial intelligence, and other technologies to improve the use of robotics in manufacturing for the aerospace and shipbuilding industries.

The institute, called the Advanced Robotics Manufacturing Institute (ARM), was announced earlier this month and will include several Connecticut businesses and academic institutions. The Connecticut portion of the proposal was led by UConn, the United Technologies Research Center, UTC Aerospace Systems, and ABB US Corporate Research. The institute will be led by American Robotics Inc., a nonprofit associated with Carnegie Mellon University in Pittsburgh, Penn.

The ARM institute is the 14th and final national institute created under President Obama’s Manufacturing USA initiative, according to Michael Accorsi, senior associate dean of engineering.

“The focus on robotics makes it a great fit for Connecticut, with our strong ties to the aerospace and shipbuilding industries – industries that can really benefit from the next generation of robotic innovation,” he said.

The new institute is supported by a total of $253 million in funding. Federal funding represents $80 million of that, with the remaining money coming from 123 industrial partners, 40 academic and academically affiliated partners, and 64 government and nonprofit partners.

At UConn, Ashwin P. Dani’s Robotics and Controls Lab is already performing research on interactions between robots and humans. Dani and his graduate students are creating algorithms so that industrial robots can learn what action a person will likely take in a given situation. By understanding where a person will move, a robot can work alongside a human and avoid injuring them.

“The new institute is designed to create an ecosystem of robotics,” said Dani, assistant professor of electrical and computer engineering. “That ecosystem will involve creating collaborative robotics that can do flexible, highly variable jobs efficiently and create advancements in artificial intelligence, particularly human-robotic interactions. That’s an area we already focus on here at UConn.”

The U.S. Department of Defense’s Manufacturing USA initiative is designed to encourage private industry, academia, and government collaboration to revitalize and enhance U.S. competitiveness in key areas. As a part of ARM, UConn will create a new, advanced robotics facility within the new UConn Tech Park, which will expand on UConn’s existing robotic capabilities.

The aerospace, automotive, and electronics industries will represent 75 percent of all robots used in the country by 2025. UConn and other Connecticut partners are focusing on the aerospace and ship building industries, which have been slower to adopt robotic technologies than the automotive industry. Dani said that because these industries create a smaller volume of products than the automotive industry, they need robots that can do a variety of tasks.

“The automotive industry makes millions of cars every year, so each robot can be highly specialized. The aerospace industry creates far fewer individual products, so each robot needs to be able to quickly learn and perform multiple tasks,” Dani said. “UConn and ARM will make the innovations necessary to create agile, dexterous, and collaborative robotics.”

The new institute aims to increase small manufacturers’ use of robots by 500 percent. UConn will work with community colleges around the state to provide training in robotic jobs within existing STEM programs, to meet the increasing demands for the robotic manufacturing industry.

Engineering Alum’s Gift To Help Keep UConn Safe

UConn has installed a new system that can detect gunshots and explosions, and send live video feed to officers’ cellphones. (Sean Flynn/UConn Photo)

During active shooter events, the speed with which first responders get information is key to saving lives. Thanks to a donation from a UConn engineering alum, UConn police could learn about an event in a matter of seconds.

Robert Hotaling ’01, an electrical engineering alum and the founder of Verbi Security, is donating an intelligent gunshot detection and IP device unification platform to UConn. His company’s system detects gunshots or explosions, sends information to campus police through an automated system in a matter of seconds and links the location to maps and video cameras.

“That, to me is the difference here; we’re a mobile first solution. We leverage mobile devices to get instant notifications,” Hotaling said.

Hotaling was inspired to donate the system when a student worker made a routine alumni donation call. After considering the request, Hotaling decided to give something more than just money.

“I said ‘I could give you some money, but I’m the founder of this company, I’ve got this tech, and I could make a donation of that tech.’ If it wasn’t for that student, I might not have thought about the donation,” Hotaling said.

The platform, which Hotaling said is worth roughly $175,000, uses military grade intelligent shot detectors to search for specific sounds.

“The sensor listens, but not for the sound of

Electrical Engineering Alum Robert Hotaling ’01 meets with members of the UConn Police. (UConn Foundation Photo)

the human voice. The on board processing algorithm uses fuzzy logic to look for the acoustics of a gunshot or an explosion,” Hotaling said.

Hotaling stressed that there won’t be an invasion of privacy with the system.

“There are no privacy concerns here, all it’s doing is looking for the gunshot,” he said.

UConn has not had a problem with shooters, but recognized that the donation could enhance campus security.

“We’re using it to be very proactive,” says Hans Rhynhart, UConn’s interim director of public safety and chief of police. “This is a great opportunity to test a brand new system that has the potential to be really useful to our community.”

The system can notify officers in a variety of ways, including text messages, iPad notifications and text to speech automated phone calls- which officers are trained to look for.

“The officers get the notification, then click on the cameras in the zone and can get a live feed of what’s going on there,” he said.

The system is also capable of sending alerts to students, faculty and UConn employees with the same sort of fast turnaround.

Hotaling said that he’s excited by the chance to give back to UConn.

“I walked those halls,” He said. “I love UConn, I loved my time there, and I’m so happy to be a part of this process.”

Black Hats, Cyber Bots, Zombies, And You

The UConn Comcast Center of Excellence for Security Innovation houses researchers working to combat malicious hackers (Istockphoto).

The UConn Comcast Center of Excellence for Security Innovation houses researchers working to combat malicious hackers (Istockphoto).

By Colin Poitras, UConn Communications
This story originally appeared in UConn Magazine.

Cyberattacks come in all shapes and sizes. Experts say it could be only a matter of time before they pose a real threat to our daily lives. The electronic devices in our world today are interconnected like never before. Our cars are no longer machines but rolling PCs with different components constantly talking to one another. Our watches are telephones. Our telephones are high-speed computers. And with all this increased convenience comes greater vulnerability. In the constant rush to get new products to market, security can be an afterthought.

chandyFortunately, a crack team of cybersecurity specialists, led by John Chandy, an electrical and computer engineering professor, and Laurent Michel, an associate professor of computer science and engineering, is working to protect our information. UConn’s Comcast Center of Excellence for Security Innovation is advancing research to strengthen the nation’s electronic information networks and training a new generation of hardware, software, and network security engineers to protect the integrity of everything from small consumer electronics to the complex computer systems running our major industrial, financial, and transportation systems.

Secured behind passcode-protected entry doors, the Comcast lab is embedded deep inside one of UConn’s main academic buildings. Getting there can be an adventure.

If you visit the lab via the building’s main door, you must go down a set of stairs, along a long hallway to the rear of the building, then it’s a quick left, quick right, another left, up a ramp, through some fire doors, past the locked doors of several large humming mechanical rooms, another right, another left, yet another right, and finally a quick left and you are there. Or you might be. It’s hard to be sure because there is absolutely no indication of where the lab is on any of the directional office signs. Even next to the lab’s main door there is only a small 9- by 6-inch plaque in letters slightly larger than what you are reading here.

FBI Alert Number I-031716-PSA: Motor Vehicles are Increasingly Vulnerable to Remote Exploits
“researchers could gain significant control over vehicle functions remotely by exploiting wireless communications vulnerabilities”


Talk to Michel or Chandy for a few minutes and you begin to get a sense of what life is like in their world of electronic espionage. And if you leave feeling a little paranoid, well, that’s to be expected.

Michel will tell you that the world is filled with hackers and malicious machines

known as zombies, or computer bots, which hackers have seized via remote control and without their owners’ knowledge or permission. Those machines are constantly scouring the Internet trying to steal information from your, my, and everyone else’s computers. From the moment you open your laptop and connect to the Internet, your computer is likely getting assaulted by malicious attacks, Michel says. If your computer’s security is good and you keep current with all the latest security updates, chances are you’re successfully fending off most of them… for now. But hackers are a relentless and mischievous bunch. All it takes is one click on a bogus email, one click on an infected website, and the black hat hackers are in.

The good news is that amid the piles of green motherboards, electrical wiring, testing equipment, and computer consoles, Chandy, Michel, and a team of about a half-dozen very talented graduate and undergraduate students are playing the role of said hackers. Here, however, they are the good guys. Michel likes to describe the team as “ethical hackers,” white hats probing ever deeper into Comcast’s hardware and computing systems to expose potential vulnerabilities.

The battle between the white hats and the black hats is constant. Cybersecurity is an ever-shifting landscape as new technologies, system updates, viruses, worms, and attack strategies emerge on the Internet.

“John and I are constantly on the lookout for what’s happening,” says Michel. “What are the new vulnerabilities? What are the latest attacks? To do this properly, you have to be like a surfer. You have to be on top of the wave, not behind it. You have to keep moving and always stay a little bit ahead.”

If the lab is successful at breaking into a system, that’s a good thing. Exposing a vulnerability in the lab gives vendors the opportunity to correct a problem before a product goes to market or to fix a problem if the product is already in circulation.

If the research team fails to get into a system, well, that’s okay too. That means the system’s designers are on top of their game and did a great job protecting the system’s integrity and locking it tight.

Since it opened, Chandy says the lab has made significant discoveries that helped vendors and saved consumers considerable headache. But because of the often secretive nature of the lab’s work and its basis in security, the limelight of commercial success doesn’t always extend to the lab’s cubicles and workbenches.

When students find a potential vulnerability in a system, the lab immediately notifies the vendor or system provider so the weakness can be addressed. A lot of times, news of the discovery stops there. Chandy recounts a time when he and other lab members heard of a significant system vulnerability being discussed at a national cybersecurity conference. It sounded familiar. Chandy turned to his colleagues and whispered, “Didn’t we find that months ago?” Such is the nature of the business.

“The lab we have here is pretty unique for a university,” says Chandy. “A lot of times, the way we get into these systems is not necessarily through back doors. I would call them testing and debugging phases,” Chandy says. “One of the things a vendor wants to do when they release these systems is they want to test it. So they leave the interfaces open so we can do just that.”


FBI Alert Number I-091015-PSA: Internet of Things poses opportunities for cyber crime
“devices with default passwords or open Wi-Fi connections are an easy target for cyber actors to exploit”



Some of the latest technology on the market involves what Chandy calls the Internet of Things. People used to have a personal computer that did one job. A watch that did another. A telephone that had its uses and a TV or thermostat with separate functions. Now, with the Internet of Things, all of those devices are capable of interacting and talking to one another. You can turn up your home thermostat from work using your smart phone. You can check your email on your watch and pay your bills through your TV.

But with all that convenience and interconnectivity comes increased vulnerability. Keeping your information safe on all those different platforms is this team’s task.

“We’re mainly looking at things from a hardware level, those devices that are going out in the field and whether they are properly protected. We try to come up with scenarios that make sense from an attacker’s perspective,” says Chandy. “We take on the role of the hacker because if we can do it, that means a hacker can do it, too.”

As an academic lab, the Comcast Center is also a place of learning. The testing that is done here is not a matter of repetitive trial-and-error assaults, but a more deliberative, targeted, scientific process.

“Think of it like a game of Clue,” says Michel. “It’s not like we try something just to find out if it works or not. As we attempt an attack, we gather evidence along the way. That evidence may betray something about the platform, the device, the software that we are trying to test. Once we have that information, we regroup and discuss what we have learned and its implications, and then we try to develop more experiments and high-end scenarios so we can learn more. So it’s not like we have this dictionary of twenty different attacks and we try them all sequentially. It’s a much more principled approach.”

The students working in the lab operate in silence. A young woman types away intently on her keyboard. A bearded student in a New York Giants T-shirt sighs heavily, steps away from his computer for a brief break, then returns. Focused. Once again engrossed with the task before him at his work station. Two sage green walls in the rear of the lab are covered with black ink diagrams and hastily scrawled text.

An eviscerated teddy bear sits on a desktop.

“Stress relief, John?” a visitor asks, pointing to the multicolored wires ripped out of the bear’s abdomen.

“Side project,” Chandy answers with a sly grin. Then he explains that even a children’s toy as innocuous as a teddy bear can be a personal security threat. In this case, the interactive bear has a small computer inside that Chandy’s lab found lacked authentication protection. It could be hacked, potentially exposing the owner’s and other bear owners’ personal information with a few strokes of cyber sleight-of-hand.

“The students here are developing skills that none of them had a year ago,” says Chandy. “The skills they are developing would make them great hackers. But it is also making them great engineers.”


Lisa wasn’t looking forward to the confrontation. Her aging mother, bedridden with different ailments and dependent on care, was really angry this time. For months she had suspected Sarah, her live-in nurse, was stealing her money. And now, the latest bank statement confirmed it. On top of it all, Sarah always seemed to be on her iPad when her mother needed her. The chest pains were back. The small automatic defibrillator under her mother’s skin activated twice in the past two months. The stress wasn’t good.

Lisa enters the house. She eyes Sarah, who is standing, her back to her, at the kitchen counter – again, on her computer. Lisa walks into her mother’s room, careful to speak softly so their conversation won’t be overheard. Within a few minutes, Lisa notices her mother’s color start to change. She seems to have trouble breathing. Sweat builds on her upper lip. She tells Lisa she feels strange, like her heart is racing out of control. The device in her chest keeps vibrating, sending sharp shocks into her heart muscles. The shocks are getting stronger. Her mother cries out in pain. Lisa calls frantically for Sarah. No response. Her mother goes limp.

Back in the kitchen, Sarah quietly shuts down her iPad and walks toward the bedroom.



More than 20 faculty members and more than 100 graduate students in the schools of Engineering and Business are conducting research through the Connecticut Cybersecurity Center at UConn. They are examining cryptography and cryptanalysis; data security and privacy; information fusion and data mining for Homeland Security; and trustable computing systems.

The academic research building that houses the Comcast Center of Excellence for Security Innovation houses two other major cyber- security labs. The Center for Hardware Assurance, Security, and Engineering (CHASE) contains some of the most advanced equipment available to conduct security analysis on nanoelectronics. Its research focuses on counterfeit device detection and preserving the integrity of silicon microchips, the very cornerstones of the worldwide computer industry. The building also is home to the Center for Voting Technology Research (VoTeR Center), which investigates new technologies to ensure the integrity of the electronic voting process.


Questions And Answers with UConn Alum Dipayan Ghosh

Dipayan GhoshDipayan Ghosh is a UConn alum who currently works in privacy and public policy for Facebook. He’ll be a part of our Engineering Centennial Lecture Series, speaking on April 11 in Laurel Hall, room 101.

He was previously a technology and economic policy advisor at the White House and was recently named to Forbes “30 under 30” list, which celebrates influential individuals in a variety of fields who are under 30 years old. UConn Engineering asked him a few questions, as a prelude to his talk.

How did your time at UConn help to prepare you for the interesting directions your career has taken?

My career has been grounded in my technology background, which I have attempted to apply in the business and policy world. I made my first steps at UConn as an undergraduate in electrical and computer engineering. During my time in Storrs, three aspects of my education really inspired and motivated me. The first was the quality of the academic community in the electronic and computer engineering (ECE) department. I had a chance to work with Professor Peter Luh, a chair of the department and former department head, who gave me the incredible opportunity to work at his lab as an undergraduate researcher. That exposed me to difficult research problems in mathematics and optimization, and gave me access to a brilliant group of lab mates. Second, the quality of the education. I found myself working quite a lot as an undergrad – and that was not only because the subject material itself was difficult, but also because our professors really challenged us to think outside the box. I recall a couple classes in particular that had my ECE class stumped more often than not. I was part of the honors and University Scholars programs through the undergraduate center, as well, which kept me busy with technical research alongside regular coursework. And third, the quality of my classmates and peers at the school; the ECE pool was a close-knit group of very talented students that worked as a team. That type of support network really helps you as an undergraduate.

You’ve had a very interesting career path so far, going from the White House to Facebook. What has led you down this path? Discuss the different work environments, and the process of adapting to the change between the two.

I have been very fortunate to have had these experiences, and am thankful for the start I got in college to get here. Having the opportunity to work at both the White House and Facebook has been incredibly valuable – it has given me a close view into the ways that both organizations make key decisions.  The end goal of each is to create value for people – and both are incredibly effective at doing just that. But they do so in very different ways; whereas the White House works through a bureaucracy across the federal agencies to develop policy recommendations or make decisions, Facebook operates on a somewhat different timeline and structure. Both systems are highly influential and impact millions or billions of people with every action they take – but the two systems actually teach you very different things about decision-making and management.  That’s been the most interesting dynamic for me, and while it takes time to adjust to any new experience I have really enjoyed my experience at Facebook.

Your research interests during grad school focused on the practical limitations of technological privacy due to competing stakeholders. Where did your interest in this topic come from? What about that intersection fascinates you?

Privacy is one of the most critical issues to consider in the context of modern commerce over the Internet – perhaps the most critical. The Internet ecosystem and much of global commerce are driven by data and, to a large extent, personal information. Companies and government organizations that collect such sensitive personal information have to take care to give individuals the appropriate access to and control over their data. Otherwise, they both run the risk of losing public trust, and the Internet ecosystem can be eroded. This understanding has driven me to this field. Without consumer privacy, the Internet as we know it would not exist at all. I first started examining privacy in detail at Cornell, under the supervision of Professor Stephen Wicker. Previously, I had primarily studied fields in mathematics, including optimization and nonlinear programming. As I became more interested in the field of information theory, I saw the fundamental relevance of privacy and computer security. I found that both government and industry have to take steps to make sure they transmit, use, and store sensitive data in ways that respect consumer privacy. Some of that falls into cybersecurity, and making sure that organizations uphold an adequate level of data protection. But part of that also comes down to the choices those organizations make about consumer data. When the Snowden disclosures occurred some years later, the public eye really turned toward these issues in a big way.

Describe your current role at Facebook and what you hope to accomplish as a privacy and public policy advisor.

Facebook works diligently to protect its users’ privacy, and the company’s development of public policy on privacy issues reflects the steps it takes internally to assure protection. This work starts with making the right choices for internal data policies – that is, with respect to the kinds of data we might collect and how we might secure it on our systems to ensure that malicious hackers do not gain illegal access to it.  But it also means that we need to actively survey the public’s current sentiment around privacy and security issues, and try to address these sentiments on our site. That, for a large part, is my job – to understand public sentiment and, working with our team in California, support the development of the policies and standards that we uphold on our site. That policy development process manifests itself in a number of ways – including in how we assure privacy and security for users on the platform, or how we might deal with uploaded content that doesn’t meet the standards of our public statement of rights.

How does a company or government agency balance privacy and the need for rich data?

I think both kinds of organizations – the federal government and tech companies – think hard about collecting personal data before they do it. The reason for that is simple: at the end of the day, the U.S. government and publicly traded companies are responsible to their individual constituents – whether the American people, or individual users of Facebook. That brings a very real element to balancing privacy. Companies and governments always have to take care to secure and protect data, and live by certain principles in their use of that data – principles that are known to and agreed upon by the persons to which that data pertains.

What are reasonable expectations of privacy now? How proactive does an individual need to be to ensure their own privacy (this is in relation to your research interests, not just in relation to your new role at Facebook)?

In my view, people play an important role in ensuring their privacy. Every day, we make choices about the digital presence we create for ourselves. Those choices define our online activity, but also inherently our digital privacy and security. For instance, some people might decide against using online banking or payment applications because they do not wish to share their financial information. Ultimately, I find that organizations collect data to make the world more interconnected and deliver richer content and greater value to us. That’s the fundamental nature of the Internet ecosystem, and it goes beyond only the federal government or technology companies, and extends to health care, finance, and educations – all of these are areas in which organizations are increasingly accessing sensitive data. What is most critical is that they give consumers the appropriate choice and control over how their data is used.